基本情報
- 所属
- 自治医科大学 医学部・医学研究科 生化学講座 病態生化学部門/遺伝子治療研究センター 准教授
- 学位
- 博士(医学)(2000年3月 自治医科大学)
- J-GLOBAL ID
- 200901040571142546
- researchmap会員ID
- 1000300010
- 外部リンク
研究分野
5経歴
7-
2024年11月 - 現在
-
2018年11月 - 2024年10月
-
2011年1月 - 2018年10月
-
2009年1月 - 2011年1月
-
2006年11月 - 2009年1月
学歴
3-
- 2000年
-
- 1995年
-
- 1993年
委員歴
3-
2012年4月 - 現在
-
2017年11月 - 2021年10月
-
2012年10月 - 2013年9月
受賞
4-
2011年11月
-
2008年11月
-
1998年4月
論文
46-
Arteriosclerosis, thrombosis, and vascular biology 44(12) 2616-2627 2024年12月BACKGROUND: PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS: We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS: The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP (enhanced green fluorescent protein) sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS: These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
-
Blood advances 7(22) 7017-7027 2023年11月28日The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.
-
Molecular Therapy - Methods & Clinical Development 30 502-514 2023年8月
-
PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cellsCommunications Medicine 3(1) 2023年4月19日Abstract Background Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. Methods We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient’s F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. Results Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG–mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. Conclusion A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.
-
The Journal of Gene Medicine 2023年4月12日
-
Molecular therapy. Methods & clinical development 27 404-414 2022年12月8日 査読有りAdeno-associated virus (AAV) vectors are promising modalities of gene therapy to address unmet medical needs. However, anti-AAV neutralizing antibodies (NAbs) hamper the vector-mediated therapeutic effect. Therefore, NAb prevalence in the target population is vital in designing clinical trials with AAV vectors. Hence, updating the seroprevalence of anti-AAV NAbs, herein we analyzed sera from 100 healthy individuals and 216 hemophiliacs in Japan. In both groups, the overall seroprevalence against various AAV serotypes was 20%-30%, and the ratio of the NAb-positive population increased with age. The seroprevalence did not differ between healthy participants and hemophiliacs and was not biased by the concomitant blood-borne viral infections. The high neutralizing activity, which strongly inhibits the transduction with all serotypes in vitro, was mostly found in people in their 60s or of older age. The multivariate analysis suggested that "60s or older age" was the only independent factor related to the high titer of NAbs. Conversely, a large proportion of younger hemophiliacs was seronegative, rendering them eligible for AAV-mediated gene therapy in Japan. Compared with our previous study, the peak of seroprevalences has shifted to older populations, indicating that natural AAV exposure in the elderly occurred in their youth but not during the last decade.
-
Scientific Reports 12(1) 2022年12月Abstract IκBζ is a transcriptional regulator that augments inflammatory responses from the Toll-like receptor or interleukin signaling. These innate immune responses contribute to the progression of nonalcoholic fatty liver disease (NAFLD); however, the role of IκBζ in the pathogenesis of NAFLD remains elusive. We investigated whether IκBζ was involved in the progression of NAFLD in mice. We generated hepatocyte-specific IκBζ-deficient mice (Alb-Cre; Nfkbizfl/fl) by crossing Nfkbizfl/fl mice with Alb-Cre transgenic mice. NAFLD was induced by feeding the mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). CDAHFD-induced IκBζ expression in the liver was observed in Nfkbizfl/fl mice, but not in Alb-Cre; Nfkbizfl/fl mice. Contrary to our initial expectation, IκBζ deletion in hepatocytes accelerated the progression of NAFLD after CDAHFD treatment. Although the increased expression of inflammatory cytokines and apoptosis-related proteins by CDAHFD remained unchanged between Nfkbizfl/fl and Alb-Cre; Nfkbizfl/fl mice, early-stage steatosis of the liver was significantly augmented in Alb-Cre; Nfkbizfl/fl mice. Overexpression of IκBζ in hepatocytes via the adeno-associated virus vector attenuated liver steatosis caused by the CDAHFD in wild-type C57BL/6 mice. This preventive effect of IκBζ overexpression on steatosis was not observed without transcriptional activity. Microarray analysis revealed a correlation between IκBζ expression and the changes of factors related to triglyceride biosynthesis and lipoprotein uptake. Our data suggest that hepatic IκBζ attenuates the progression of NAFLD possibly through the regulation of the factors related to triglyceride metabolism.
-
Adeno-associated virus vector-mediated gene therapy for congenital protein C deficiency in mice(和訳中)日本血液学会学術集会 83回 OS3-4 2021年9月
-
Molecular Therapy - Methods & Clinical Development 22 162-171 2021年9月 査読有りMost gene therapy clinical trials that systemically administered adeno-associated virus (AAV) vector enrolled only patients without anti-AAV-neutralizing antibodies. However, laboratory tests to measure neutralizing antibodies varied among clinical trials and have not been standardized. In this study, we attempted to improve the sensitivity and reproducibility of a cell-based assay to detect neutralizing antibodies and to determine the detection threshold to predict treatment efficacy. Application of the secreted type of NanoLuc and AAV receptor-expressing cells reduced the multiplicity of infection (MOI) for AAV transduction and improved the sensitivity to detect neutralizing antibodies with a low coefficient of variation, whereas the detection threshold could not be improved by the reduction of MOI to <100. After human immunoglobulin administration into mice at various doses, treatment with high-dose AAV8 vector enabled evasion of the inhibitory effect of neutralizing antibodies. Conversely, gene transduction was slightly influenced in the mice treated with low-dose AAV8 vector, even when neutralizing antibodies were determined to be negative in the assay. In conclusion, we developed a reliable and sensitive cell-based assay to measure neutralizing antibodies against AAV and found that the appropriate MOI to detect marginal neutralizing antibodies was 100. Other factors, including noninhibitory antibodies, marginally influence in vivo transduction at low vector doses.
-
Scientific Reports 11(1) 14824-14824 2021年7月 査読有り筆頭著者責任著者<title>Abstract</title>Coagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the <italic>F8</italic> gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing <italic>F8</italic> conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.
-
International Journal of Hematology 111(6) 786-794 2020年6月 査読有りPlatelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.
-
Molecular brain 13(1) 74-74 2020年5月11日 査読有りPsychoneuroimmunological studies have clearly demonstrated that both cellular and humoral immunity are related to major depression. Soluble ST2 is regarded as a key molecule regulating immune system as well as cell proliferation. Indeed, soluble ST2 is reported to reduce IL-33-induced IL-6 and TNF-α production in macrophages and IL-33-induced IL-5 and IL-13 production in type 2 innate lymphoid cells. Elevated serum concentrations of soluble ST2 have been reported in patients with neuropsychiatric disorders, suggesting pathophysiological roles of soluble ST2 in behavioral phenotypes. Nevertheless, the relation between soluble ST2 and depressive behavior remain to be uncovered. To complement this point, we performed broad behavioral phenotyping, utilizing transgenic mice with a high concentration of serum ST2 in the present study. Soluble ST2 overexpression mice (ST2 Tg mice) were generated on a C3H/HeJ background. ST2 Tg mice crossed onto the BALB/c genetic background were used. Before starting tests, each mouse was observed in a clean cage for a general health check and neurological screening tests. In Experiment I, comprehensive behavioral phenotyping was performed to reveal the role of soluble ST2 on sensorimotor functions, anxiety-like behaviors, depression-like behaviors, social behaviors, and learning and memory functions. In Experiment II, to confirm the role of soluble ST2 on depression-like behaviors, a depression test battery (two bottle choice test, forced swimming test, and tail suspension test) was applied. The general health check indicated good general health and normal gross appearance for ST2 Tg mice. Further, the neurological reflexes of all the mice were normal. We found that soluble ST2 overexpression resulted in decreased social interaction. Moreover, depression-like behaviors of ST2 Tg mice were observed in two well-established behavioral paradigms, the forced swimming test and the tail suspension test. Nevertheless, hedonic reaction to sucrose was observed in ST2 Tg mice similar to WT mice. These results suggest the depression in the ST2 Tg mice. In conclusion, through a series of experiments, we established the animal model for assessing role of soluble ST2 in neuropsychiatric disorders, and revealed the possible involvement of soluble ST2 in depressive behavior.
-
The Journal of Immunology 204(8) 2033-2042 2020年4月15日 査読有りIκBζ (encoded by the Nfkbiz) is a member of the nuclear IκB family, which is involved in the expression of secondary response genes based on signals from TLR or IL-1R. ST2L, an IL-33R, is a member of the IL-1R family and abundantly expressed in tissue-resident immune cells, such as mast cells and innate lymphoid cells; however, its downstream signaling pathway remains unelucidated. In this study, we examined the role of IκBζ in ST2L-mediated cytokine and chemokine production in mast cells. Murine bone marrow cells were differentiated ex vivo into bone marrow-derived mast cells (BMMCs). The treatment of BMMCs with IL-33 transiently induced robust IκBζ expression. Of the 40 cytokines and chemokines examined using a cytokine and chemokine array, the concentrations of IL-6, IL-13, CCL2, CCL3, and TNF-α in the supernatant were augmented by IL-33. The deletion of IκBζ in BMMCs resulted in a significant reduction of the production of these mediators and the expression of their mRNA. NF-κB p50 but not p65 translocated to the nucleus by IL-33 and was not affected by the deletion of IκBζ. However, induction of IκBζ and the resultant cytokine and chemokine productions were significantly inhibited by pretreatment with an NF-κB inhibitor. The deletion of IκBζ did not affect the phosphorylation of ERK, p38 MAPK, or JNK by IL-33, and the treatment with inhibitors of these mitogen-activated kinases failed to abolish the expression of Nfkbiz Our findings suggest that IκBζ augments IL-33-dependent cytokine and chemokine production in BMMCs through the action of NF-κB.
-
Transplantation 103(9) 1834-1843 2019年9月 査読有りBACKGROUND: Chemokines and chemokine receptors are potential targets for the prevention and treatment of graft-versus-host disease (GVHD). The objective of the current study is to determine the clinical relevance of xenogeneic transplantation models in terms of host and donor chemokine profiles and, if this is the case, to assess the clinical efficacy of C-C chemokine receptor (CCR) 5 antagonist maraviroc for the prevention of GVHD using this model. METHODS: Xenogeneic GVHD was induced by intravenous injection of 5 × 10 human pan T cells into NOD/Shi-scid-IL2rγ (NOG) mice or MHC class I/II-deficient NOG mice in the presence or absence of total body irradiation before transplantation. RESULTS: Extensive tissue destruction with human T-cell infiltration was observed throughout the body, particularly in lungs and liver, but relatively mild in gut. Consistent with this finding, quantitative polymerase chain reaction confirmed the upregulation of mouse CXC chemokine ligand (CXCL) 9 and CXCL10 in lungs and CCL4 in lungs and liver but not in gut. The addition of total body irradiation (1) led to the early release of mouse CCL4 and CXCL10, (2) upregulated a number of chemokine-related genes in human T cells, (3) induced higher expression of CCR5 on human CD4 and CD8 T cells and CXCR3 on human CD4 T cells, and (4) promoted their migration and proliferation in organs, resulting in more severe tissue damage. In this context, pharmacological CCR5 blockade neither ameliorated GVHD nor prolonged survival in NOG mice. CONCLUSIONS: Our experimental data do not demonstrate clinical benefit of CCR5 antagonist for the prevention of GVHD in a myeloablative setting.
-
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY 38(11) 2590-2600 2018年11月 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 292(5) 1762-1772 2017年2月 査読有り筆頭著者
-
Biochemistry and Biophysics Reports 5 401-407 2016年3月1日 査読有り責任著者
-
Molecular immunology 54(2) 157-163 2013年6月 査読有り
-
Biochemical and Biophysical Research Communications 430(3) 969-974 2013年1月18日 査読有り
-
AMERICAN JOURNAL OF HEMATOLOGY 87(12) 1084-1088 2012年12月 査読有り
-
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 109(23) 9089-9094 2012年6月 査読有り
-
EUROPEAN JOURNAL OF IMMUNOLOGY 40(9) 2632-2642 2010年9月 査読有り
-
MOLECULAR AND CELLULAR BIOCHEMISTRY 335(1-2) 75-81 2010年2月 査読有り
-
JOURNAL OF RHEUMATOLOGY 37(1) 18-25 2010年1月 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 387(1) 218-222 2009年9月 査読有り筆頭著者責任著者
-
EUROPEAN RESPIRATORY JOURNAL 33(6) 1415-1428 2009年6月 査読有り
-
CELLULAR SIGNALLING 20(9) 1679-1686 2008年9月 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 282(36) 26369-26380 2007年9月 査読有り責任著者
-
MOLECULAR CELL 24(5) 771-783 2006年12月 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 341(2) 425-432 2006年3月 査読有り責任著者
-
Biochimica et biophysica acta 1728 53-64 2005年4月 査読有り筆頭著者
-
Biochimica et biophysica acta 1681 1-14 2004年11月 査読有り
-
BIOCHEMICAL JOURNAL 370 159-166 2003年2月 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 277(9) 6974-6984 2002年3月 査読有り筆頭著者
-
EUROPEAN JOURNAL OF BIOCHEMISTRY 268(24) 6526-6533 2001年12月 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 285(5) 1377-1383 2001年8月 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 275(21) 15992-16001 2000年5月 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 251(2) 603-608 1998年10月 査読有り筆頭著者
-
BIOSCIENCE REPORTS 17(2) 115-146 1997年4月 査読有り
MISC
20-
FASEB JOURNAL 27 835.4 2013年4月
講演・口頭発表等
82-
ISTH2020, Virtual Congress 2020年7月12日
-
ISTH2020, Virtual Congress 2020年7月12日
担当経験のある科目(授業)
11-
2015年 - 現在基礎系総合医学講義I (自治医科大学 医学研究科 博士課程)
-
2015年 - 現在人間生物学系1講義I (自治医科大学 医学研究科 博士課程)
-
2014年 - 現在病態生化学 (自治医科大学 医学部)
-
2012年 - 現在実験医科学概論 (自治医科大学 医学研究科 修士課程)
-
2000年 - 現在生化学実習 (自治医科大学 医学部)
所属学協会
7-
2023年 - 現在
-
2019年 - 現在
-
2017年 - 現在
-
2017年 - 現在
-
2007年 - 現在
共同研究・競争的資金等の研究課題
11-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2018年4月 - 2021年3月
-
ブリストル・マイヤーズ スクイブ(株) 非アルコール性脂肪肝疾患(NAFLD)研究助成 2018年4月 - 2021年3月