基本情報
研究キーワード
3経歴
9-
2016年 - 現在
-
2014年 - 2016年
-
1996年 - 2016年
-
1996年 - 2000年
学歴
2-
- 1990年
-
- 1984年
委員歴
2-
2012年 - 現在
-
1998年
論文
102-
The journal of gene medicine 8 990-997 2006年8月 査読有り
-
MOLECULAR THERAPY 13 S3 2006年5月 査読有り
-
Molecular therapy : the journal of the American Society of Gene Therapy 13 823-828 2006年4月 査読有り
-
Journal of virology 80 1874-1885 2006年2月 査読有り
-
Mol Ther 13(4) 738-46 2006年 査読有り
-
Molecular therapy : the journal of the American Society of Gene Therapy 12 725-733 2005年10月 査読有り
-
Hum Gene Ther 16(10) 1212-8 2005年 査読有り
-
The journal of gene medicine 6 1049-1060 2004年10月 査読有り
-
International journal of oncology 25 729-735 2004年9月 査読有り
-
Molecular biotechnology 27 7-14 2004年5月 査読有り
-
Gene Ther 11(24) 1772-9 2004年 査読有り
-
The journal of gene medicine 6(1) 22-31 2004年1月 査読有りBACKGROUND: In vivo expansion of gene-modified cells would be a promising approach in the field of hematopoietic stem cell gene therapy. To this end, we previously developed a selective amplifier gene (SAG), a chimeric gene encoding the granulocyte colony-stimulating factor (G-CSF) receptor (GCR), as a growth-signal generator and the hormone-binding domain of the steroid receptor as a molecular switch. We have already reported that hematopoietic cells retrovirally transduced with the SAG can be expanded in a steroid-dependent manner in vitro and in vivo in mice and nonhuman primates. In this study, we have developed a new-generation SAG, in which the erythropoietin (EPO) receptor (EPOR) is utilized instead of the steroid receptor as a molecular switch. METHODS: Two EPO-driven SAGs were constructed, EPORGCR and EPORMpl, containing the GCR and c-Mpl as a signal generator, respectively. First, to compare the steroid-driven and EPO-driven SAGs, Ba/F3 cells were transduced with these SAGs. Next, to examine whether GCR or c-Mpl is the more suitable signal generator of the EPO-driven SAG, human cord blood CD34(+) cells were transduced with the two EPO-driven SAGs (EPORMpl and EPORGCR). Finally, we examined the in vivo efficacy of EPORMpl in mice. Irradiated mice were transplanted with EPORMpl-transduced bone marrow cells followed by administration of EPO. RESULTS: The EPO-driven SAGs were shown to induce more rapid and potent proliferation of Ba/F3 cells than the steroid-driven SAGs. The EPORMpl induced more efficient EPO-dependent proliferation of the human cord blood CD34(+) cells than the EPORGCR in terms of total CD34(+) cell, c-Kit(+) cell, and clonogenic progenitor cell (CFU-C) numbers. In the transplanted mice the transduced peripheral blood cells significantly increased in response to EPO. CONCLUSIONS: The new-generation SAGs, especially EPORMpl, are able to efficiently confer an EPO-dependent growth advantage on transduced hematopoietic cells in vitro and in vivo in mice.
-
Molecular therapy : the journal of the American Society of Gene Therapy 8 895-902 2003年12月 査読有り
-
The journal of gene medicine 5 929-940 2003年11月 査読有り
-
Cancer research 63 5091-5094 2003年8月 査読有り
-
Neuroscience letters 340 153-157 2003年4月 査読有り
-
Biochemical and biophysical research communications 303(1) 170-6 2003年3月28日 査読有りWe previously developed "selective amplifier genes (SAGs)" which confer a growth advantage to transduced cells. The SAG is a chimeric gene encoding the G-CSF receptor (GCR) and the estrogen or tamoxifen (Tm) receptor and is able to expand transduced hematopoietic cells by treatment with estrogen or Tm. In the current study, we examined the in vitro efficacy of modified SAGs containing the thrombopoietin (TPO) receptor (c-Mpl) gene instead of GCR as a more potent signal generator. In addition, we constructed various mutant Mpl-type SAGs to abolish the responsiveness to endogenous TPO while retaining Tm-dependency. When Ba/F3 cells were retrovirally transduced with the Mpl-type SAGs, the cells showed Tm- and TPO-dependent growth even without IL-3. The Mpl-type SAGs induced more potent proliferation of Ba/F3 and cynomolgus CD34(+) cells than the GCR-type SAG. One mutant Mpl-type SAG (Delta GCRMplTmR) successfully lost the responsiveness to TPO without affecting the Tm-dependence.
-
Transplantation 75(5) 631-6 2003年3月15日BACKGROUND: Composite tissue allografts are unique because they provide the vascularized bone marrow with stroma, which is the supportive microenvironment. In this study, we investigated the beneficial effect of donor-derived bone marrow cells within the long-surviving recipient rats after limb transplantation. METHODS: Green fluorescent protein (GFP) transgenic rats developed for paramount cell marking were donors, and wild Wistar rats were recipients. Orthotopic hind-limb transplantation was performed using a microsurgical technique. Tacrolimus (1.0 mg/kg) was intramuscularly injected for 14 days postoperatively. The skin graft from GFP donor onto the GFP recipient was performed as a control. Flow cytometric analyses of recipient peripheral blood and bone marrow were carried out at 4 to 6 days, 18 to 21 days, 6 weeks, and 2, 4, 6, 9, and 12 months after transplantation. RESULTS: The rats that received tacrolimus therapy achieved prolonged composite graft acceptance more than 12 months, whereas GFP skin grafts were rejected at 47 days under the same immunosuppressive protocol. Numerous GFP lymphocytes and granulocytes were detected within the recipient bone marrow for the first 6 weeks post limb transplantation. These cells remained relatively stable for more than 12 months. CONCLUSIONS: The results showed that donor-derived hematopoietic stem cells engrafted in recipient bone marrow and differentiated to lymphocytes and granulocytes after limb transplantation. The vascularized bone marrow, transplanted as a part of the hind limb, could have contributed to mixed chimerism and worked as the bone-marrow source in the recipients.
-
International review of neurobiology 55 205-222 2003年 査読有り
-
Neuroscience research 45 33-40 2003年1月 査読有り
-
International journal of hematology 76 299-304 2002年11月 査読有り
-
PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES 78(7) 211-216 2002年9月 査読有り
-
JOURNAL OF GENE MEDICINE 4(5) 470-477 2002年9月 査読有りBackground The green fluorescent protein (GFP) has proven a useful marker in retroviral gene transfer studies targeting hematopoietic stem cells (HSCs) in mice. However, several investigators have reported very low in vivo peripheral blood marking levels in nonhuman primates after transplantation of HSCs transduced with the GFP gene. We retrovirally marked cynomolgus monkey HSCs with the GFP gene, and tracked in vivo marking levels within both bone marrow progenitor cells and mature peripheral blood cells following autologous transplantation after myeloablative conditioning. Methods Bone marrow cells were harvested from three cynomolgus macaques and enriched for the primitive fraction by CD34 selection. CD34(+) cells were transduced with one of three retroviral vectors all expressing the GFP gene and were infused after myeloablative total body irradiation (500 cGy x 2). Following transplantation, proviral levels and fluorescence were monitored among clonogenic bone marrow progenitors and mature peripheral blood cells. Results Although 13-37% of transduced cells contained the GFP provirus and 11-13% fluoresced ex vivo, both provirus and fluorescence became almost undetectable in the peripheral blood within several months after transplantation regardless of the vectors used. However, on sampling of bone marrow at multiple time points, significant fractions (5-10%) of clonogenic progenitors contained the provirus and fluoresced exvivo reflecting a significant discrepancy between GFP gene marking levels within bone marrow cells and their mature peripheral blood progeny. The discrepancy (at least one log) persisted for more than 1 year after transplantation. Since no cytotoxic T lymphocytes against GFP were detected in the animals, an immune response against GFP is an unlikely explanation for the low levels of transduced peripheral blood cells. Administration of granulocyte colony stimulating factor and stem cell factor resulted in mobilization of transduced bone marrow cells detectable as mature granulocyte progeny which expressed the GFP gene, suggesting that transduced progenitor cells in bone marrow could be mobilized into the peripheral blood and differentiated into granulocytes. Conclusions Low levels of GFP-transduced mature cells in the peripheral blood of nonhuman primates may reflect a block to differentiation associated with GFP this block an treatment ex vivo and in vivo. Copyright (C) 2002 John Wiley Sons, Ltd.
-
INTERNATIONAL JOURNAL OF HEMATOLOGY 76 266-266 2002年8月 査読有り
-
Molecular Therapy 6(2) 162-168 2002年8月 査読有り
-
The Journal of neuroscience : the official journal of the Society for Neuroscience 22 6920-6928 2002年8月 査読有り
-
Cancer research 62 2019-2023 2002年4月 査読有り
-
GENE THERAPY 9(6) 381-389 2002年3月 査読有り
-
Cardiovascular research 53 993-1001 2002年3月 査読有り
-
MAPPING THE PROGRESS OF ALZHEIMER'S AND PARKINSON'S DISEASE 51 459-462 2002年 査読有り
-
Methods in enzymology 346 378-393 2002年 査読有り
-
GENE THERAPY 8(19) 1450-1455 2001年10月 査読有り
-
Biochemical and biophysical research communications 285(4) 891-896 2001年7月 査読有り
-
Cancer gene therapy 8(2) 99-106 2001年2月 査読有り
-
CARDIOVASCULAR DRUGS AND THERAPY 15(1) 19-24 2001年 査読有り
-
Biochem Biophys Res Commun. 288(1) 62-68 2001年 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 276(2) 559-563 2000年9月 査読有り
-
GENE THERAPY 7(14) 1193-1199 2000年7月 査読有り
-
AMERICAN JOURNAL OF NEPHROLOGY 20(3) 242-247 2000年5月 査読有り
-
CANCER GENE THERAPY 7(4) 589-596 2000年4月 査読有り
-
ANALYTICAL BIOCHEMISTRY 278(1) 91-92 2000年2月 査読有り
-
JOURNAL OF NEURAL TRANSMISSION-SUPPLEMENT (58) 181-191 2000年 査読有り
-
ADVANCES IN RESEARCH ON NEURODEGENERATION, VOL 7 7 181-191 2000年 査読有り
-
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 266(1) 92-96 1999年12月 査読有り
-
JOURNAL OF GENERAL VIROLOGY 80 2477-2480 1999年9月 査読有り
-
JAPANESE JOURNAL OF CANCER RESEARCH 90(4) 476-483 1999年4月 査読有り
-
JOURNAL OF VIROLOGY 73(4) 2682-2693 1999年4月 査読有り
MISC
173-
MOLECULAR THERAPY 24 S87-S87 2016年5月
-
MOLECULAR THERAPY 24 S95-S96 2016年5月
-
HUMAN GENE THERAPY 26(10) A31-A31 2015年10月
-
MOLECULAR THERAPY 23 S89-S89 2015年5月
-
HUMAN GENE THERAPY 25(11) A81-A81 2014年11月
書籍等出版物
1-
Lenkocyte Typing VI , Garland Puhilishing Inc . , New York and London 1997年
Works(作品等)
2共同研究・競争的資金等の研究課題
27-
Grant-in-Aid for Scientific Research 1996年 - 2023年
-
Grant-in-Aid for Scientific Research 1994年 - 2023年
-
日本学術振興会 科学研究費助成事業 2018年4月 - 2021年3月
-
日本学術振興会 科学研究費助成事業 2010年4月 - 2015年3月
-
日本学術振興会 科学研究費助成事業 2011年 - 2013年