研究者業績

西村 渉

ニシムラ ワタル  (Wataru Nishimura)

基本情報

所属
自治医科大学医学部 解剖学講座解剖学部門 教授
学位
博士(医学)(岡山大学)

ORCID ID
 https://orcid.org/0000-0002-8068-1277
J-GLOBAL ID
200901002936688765
researchmap会員ID
1000365863

外部リンク

論文

 47
  • Kikuko Amo-Shiinoki, Katsuya Tanabe, Wataru Nishimura, Masayuki Hatanaka, Manabu Kondo, Syota Kagawa, Meng Zou, Shuntaro Morikawa, Yoshihiko Sato, Mitsuhisa Komatsu, Hiroki Mizukami, Naoki Nishida, Shun-Ichiro Asahara, Hiroshi Masutani, Yukio Tanizawa
    Science translational medicine 17(786) eadp2332 2025年2月19日  
    Insulin-dependent diabetes in patients with Wolfram syndrome (WS; OMIM 222300) has been linked to endoplasmic reticulum (ER) stress caused by WFS1 gene mutations. However, the pathological process of ER stress-associated β cell failure remains to be fully elucidated. Our results indicate loss of β cell lineage and subsequent dedifferentiation as the mechanisms underlying functional and mass deficits in WS. An immunohistochemical analysis of human pancreatic sections from deceased individuals with WS revealed a near-complete loss of β cells and subsequent decrease in α cells, suggesting loss of endocrine function. Wfs1-deficient mice displayed dysfunction, gradual loss, and dedifferentiation of β cells, leading to permanent hyperglycemia. Impairment of the β cell lineage was observed after weaning, leading to the mixed phenotype of insulin- and glucagon-producing cells in a subset of the lineage-traced β cells. Islets of Wfs1-deficient mice increased the number of dedifferentiated cells that maintained general endocrine features but were no longer reactive with antisera against pancreatic hormones. Mechanistically, Wfs1-null islets had a lower adenosine triphosphate content and impaired oxidative glycolysis, although mitochondrial oxidative function was maintained. The functional and metabolic alterations of WS β cells were recovered by deletion of thioredoxin-interacting protein (Txnip), an ER stress-induced protein up-regulated in Wfs1 deficiency. Txnip deletion preserved functional β cells and prevented diabetes progression in Wfs1-deficient mice. Together, this study deciphered pathological mechanisms of β cell dedifferentiation in β cell failure and has implications for Txnip inhibition in WS therapy.
  • Takao Nammo, Nobuaki Funahashi, Haruhide Udagawa, Junji Kozawa, Kenta Nakano, Yukiko Shimizu, Tadashi Okamura, Miho Kawaguchi, Takashi Uebanso, Wataru Nishimura, Masaki Hiramoto, Iichiro Shimomura, Kazuki Yasuda
    Life science alliance 7(8) 2024年8月  
    A lack of social relationships is increasingly recognized as a type 2 diabetes (T2D) risk. To investigate the underlying mechanism, we used male KK mice, an inbred strain with spontaneous diabetes. Given the association between living alone and T2D risk in humans, we divided the non-diabetic mice into singly housed (KK-SH) and group-housed control mice. Around the onset of diabetes in KK-SH mice, we compared H3K27ac ChIP-Seq with RNA-Seq using pancreatic islets derived from each experimental group, revealing a positive correlation between single-housing-induced changes in H3K27ac and gene expression levels. In particular, single-housing-induced H3K27ac decreases revealed a significant association with islet cell functions and GWAS loci for T2D and related diseases, with significant enrichment of binding motifs for transcription factors representative of human diabetes. Although these H3K27ac regions were preferentially localized to a polymorphic genomic background, SNVs and indels did not cause sequence disruption of enriched transcription factor motifs in most of these elements. These results suggest alternative roles of genetic variants in environment-dependent epigenomic changes and provide insights into the complex mode of disease inheritance.
  • Aiko Oka, Masahiro Takahashi, Wataru Nishimura, Shogo Oyamada, Shinichiro Oka, Satoshi Iwasaki, Kengo Kanai, Mitsuhiro Okano
    The journal of allergy and clinical immunology. Global 3(2) 100237-100237 2024年5月  
    The objective of this study was to investigate the levels of gene expression in the middle ear mucosa of 2 patients diagnosed with eosinophilic otitis media. One patient with severe hearing loss showed high expression levels of genes encoding IL-5 and IL-33 receptors.
  • Haruhide Udagawa, Nobuaki Funahashi, Wataru Nishimura, Takashi Uebanso, Miho Kawaguchi, Riku Asahi, Shigeru Nakajima, Takao Nammo, Masaki Hiramoto, Kazuki Yasuda
    Scientific reports 13(1) 17958-17958 2023年10月20日  
    The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
  • Aiko Oka, Kengo Kanai, Takaya Higaki, Seiichiro Makihara, Yohei Noda, Shin Kariya, Mizuo Ando, Wataru Nishimura, Mitsuhiro Okano
    The journal of allergy and clinical immunology. Global 2(3) 100123-100123 2023年8月  
    BACKGROUND: Chronic rhinosinusitis (CRS) can be divided into endotypes by functional or pathophysiologic findings. OBJECTIVE: The aim of this study was to analyze the expression of cytokines, prostaglandin (PG) synthases, and their receptors related to the pathogenesis of CRS, especially those contributing to nasal polyp (NP) formation. METHODS: NPs and uncinate tissue (UT) samples were collected from 90 patients who underwent endoscopic sinus surgery. They included 75 patients with CRS (including 45 with eosinophilic CRS [eCRS] and 30 with non-eCRS) and 15 patients without CRS. A total of 30 genes were selected for our original DNA array plate to analyze the levels of expression of 10 cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-13, IL-17A, IL-22, IL-25, IL-33, and TSLP), 4 prostaglandin synthases (prostaglandin D2 [PGD2] synthase, prostaglandin E2 synthase, COX-1, and COX-2), and their 16 receptors. Clustering analysis was performed according to the expression results, and clinical findings of patients from each cluster were investigated. RESULTS: The samples could be divided into 3 clusters. Cluster 1 showed elevated levels of expression of IL4, IL5, IL13, TSLP, IL1RL1 (ST2 [an IL-33 receptor]), HPGDS, and GPR44 (CRTH2, a PGD2 receptor); cluster 2 showed elevated levels of expression of IL17A and PTGES; and cluster 3 showed an elevated level of expression of IL25. Regarding clinical features, the main characteristics of each cluster were as follows: NPs from patients with eCRS for cluster 1, NPs and/or UT samples from patients with non-eCRS for cluster 2, and UTs from patients with non-CRS for cluster 3. CONCLUSION: The results suggest that there are associations between type 2 inflammation/PGD2 and eCRS and also between type 3 inflammation/prostaglandin E2 and non-eCRS.

MISC

 139

所属学協会

 8

共同研究・競争的資金等の研究課題

 16