基本情報
- 所属
- 自治医科大学 医学部生理学講座 統合生理学部門 助教
- 学位
- 博士(医学)(2023年3月 大阪大学)
- 研究者番号
- 10981293
- ORCID ID
https://orcid.org/0009-0005-9575-9961
- J-GLOBAL ID
- 202301004550668916
- researchmap会員ID
- R000049535
研究キーワード
5経歴
6-
2025年4月 - 現在
-
2024年4月 - 2025年3月
-
2024年4月 - 2025年3月
-
2023年10月 - 2024年3月
-
2023年4月 - 2023年9月
-
2021年4月 - 2023年3月
学歴
3-
2019年4月 - 2023年3月
-
2017年4月 - 2019年3月
-
2012年4月 - 2016年3月
委員歴
1-
2024年4月 - 現在
受賞
3論文
8-
Biochimica et Biophysica Acta (BBA) - Biomembranes 1867(1) 184396 2025年1月 査読有り
-
Acta Physiologica 240(5) e14137 2024年3月19日 査読有りAbstract Background Voltage‐sensing phosphatase contains a structurally conserved S1‐S4‐based voltage‐sensor domain, which undergoes a conformational transition in response to membrane potential change. Unlike that of channels, it is functional even in isolation and is therefore advantageous for studying the transition mechanism, but its nature has not yet been fully elucidated. This study aimed to address whether the cytoplasmic N‐terminus and S1 exhibit structural change. Methods Anap, an environment‐sensitive unnatural fluorescent amino acid, was site‐specifically introduced to the voltage sensor domain to probe local structural changes by using oocyte voltage clamp and photometry. Tetramethylrhodamine was also used to probe some extracellularly accessible positions. In total, 51 positions were investigated. Results We detected robust voltage‐dependent signals from widely distributed positions including N‐terminus and S1. In addition, response to hyperpolarization was observed at the extracellular end of S1, reflecting the local structure flexibility of the voltage‐sensor domain in the down‐state. We also found that the mechanical coupling between the voltage‐sensor and phosphatase domains affects the depolarization‐induced optical signals but not the hyperpolarization‐induced signals. Conclusions These results fill a gap between the previous interpretations from the structural and biophysical approaches and should provide important insights into the mechanisms of the voltage‐sensor domain transition as well as its coupling with the effector.
-
Biophysical Journal 122(11) 2267-2284 2023年6月 査読有り
-
Proceedings of the National Academy of Sciences 119(26) e2200364119 2022年6月21日 査読有り筆頭著者Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.
MISC
1講演・口頭発表等
10所属学協会
3-
2023年 - 現在
-
2020年 - 現在
-
2016年 - 現在
共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2023年8月 - 2025年3月