基本情報
- 所属
- 自治医科大学 メディカルシミュレーションセンター 講師
- 学位
- 博士(工学)(早稲田大学)
- 研究者番号
- 40754776
- ORCID ID
- https://orcid.org/0000-0003-4895-2820
- J-GLOBAL ID
- 201501068348483748
- researchmap会員ID
- 7000011990
- 外部リンク
- 日本人間工学会認定人間工学専門家(CPE)
経歴
4-
2020年12月 - 現在
-
2018年4月 - 現在
-
2017年4月 - 2020年11月
-
2015年4月 - 2017年3月
主要な学歴
3委員歴
8-
2024年6月 - 現在
-
2023年4月 - 現在
-
2023年2月 - 現在
-
2022年8月 - 現在
-
2022年7月 - 現在
受賞
3-
2019年11月
-
2019年1月
-
2011年8月
論文
27-
Cureus 16(9) e69775 2024年9月20日 査読有り
-
ヒューマンファクターズ 29(1) 18-25 2024年8月31日 査読有り筆頭著者責任著者
-
Surgical Endoscopy 2024年8月6日 査読有り
-
Renal Replacement Therapy 10(1) 2024年1月20日 査読有りAbstract Back ground In hemodialysis, hypotension occurs due to dehydration and solute removal. Conventional blood pressure monitoring during dialysis is intermittent and relies on staff experience and intuition to predict patient blood pressure trends based on the amount of water removed on the day and previous trends, which requires hemodialysis operations that do not lead to hypotension. Our research group has attempted to estimate blood pressure based on the spatial features of facial visible images, including information on facial color, and facial infrared images, including information on skin temperature. It is expected to realize early detection of blood pressure decrease during treatment if the blood pressure of dialysis patients can be estimated from their facial visible and infrared images measured continuously and remotely. In this study, we verified the applicability of deep learning algorithms in blood pressure estimation based on facial visible and infrared images of hemodialysis patients. Methods Measured facial visible and infrared images and mean blood pressure (MBP) of hemodialysis patients were applied to a convolutional neural network to construct an MBP estimation model based on the spatial features of the facial images. Results Average blood pressure could be estimated with an error of less than 20 mmHg based on the spatial features of the facial images, and the blood pressure estimation accuracy based on the spatial features of the facial infrared images was higher than that of the facial visible images. Conclusion We found the possibility of applying the deep learning algorithm to blood pressure estimation based on the spatial features of facial images. Trial registration This study is not subject to enrollment in a clinical trial due to the absence of both intervention and invasion. The Ethics Review Committee of Jichi Medical University has approved the same interpretation.
MISC
9-
Healthcare and Medical Devices 79 27-35 2023年7月 査読有り筆頭著者責任著者
書籍等出版物
4講演・口頭発表等
95-
The Association for Medical Education in Europe (AMEE) 2019 2019年8月27日
-
The Association for Medical Education in Europe (AMEE) 2019 2019年8月26日
-
19th Annual International Meeting on Simulation in Healthcare (IMSH) 2019年1月27日
-
The Association for Medical Education in Europe (AMEE) 2018 2018年8月28日
-
the 9th International Conference on Applied Human Factors and Ergonomics (AHFE) 2018年7月21日
-
the 9th International Conference on Applied Human Factors and Ergonomics (AHFE) 2018年7月21日
-
18th Annual International Meeting on Simulation in Healthcare (IMSH) 2018年1月13日
-
Engineering Psychology and Cognitive Ergonomics: Cognition and Design 2017年 Springer VerlagWith the aim of designing an interface that supports troubleshooting of a dialysis machine, a medical-engineer (ME) cognitive task analysis was conducted in this study, with the error messages currently provided by a hemodialysis machine also being analyzed and evaluated. First, we developed the “error-message mechanism diagram” for the given problem, indicating the relationship between the error message and the notifying conditions of this message (corresponding to the candidate for the cause of the problem). Next, we developed the “cognitive task flow diagram,” which shows the cause candidates generated by the ME until the source of the problem was detected. This diagram also clarifies the manner in which the ME verifies the cause candidates and the information or knowledge employed by the ME. Then, for the given problem, we compared the cognitive task flow diagram of an ME who successfully detected the problem cause and corresponding error-message mechanism diagram to evaluate the efficacy of the error messages currently provided by the device.
-
The 5th International Conference on AHFE(Applied Human Factors and Ergonomics) 2014年7月22日
-
The 3rd International Service Innovation Design Conference 2012年10月23日
共同研究・競争的資金等の研究課題
7-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月