基本情報
- 所属
- 自治医科大学 医学部内科学講座 アレルギー膠原病学部門 講師
- 研究者番号
- 20792279
- ORCID ID
https://orcid.org/0000-0002-1316-8035
- J-GLOBAL ID
- 202501005738550204
- researchmap会員ID
- R000084374
経歴
6-
2025年4月 - 現在
-
2023年9月 - 2025年3月
-
2020年4月 - 2023年8月
-
2017年3月 - 2020年3月
-
2011年4月 - 2017年3月
学歴
2-
2011年4月 - 2015年3月
-
2002年4月 - 2008年3月
委員歴
3-
2025年6月 - 現在
-
2024年6月 - 現在
-
2021年4月
受賞
6-
2021年12月
-
2021年10月
-
2019年4月
-
2018年4月
主要な論文
59-
Rheumatology (Oxford, England) 64(3) 1409-1416 2025年3月1日OBJECTIVE: The objective of this study was to stratify patients with MCTD, based on their immunophenotype. METHODS: We analysed the immunophenotype and transcriptome of 24 immune cell subsets [from patients with MCTD, SLE, idiopathic inflammatory myopathy (IIM) and SSc] from our functional genome database, ImmuNexUT (https://www.immunexut.org/). MCTD patients were stratified by employing machine-learning models, including Random Forest, trained by immunophenotyping data from SLE, IIM and SSc patients. The transcriptomes were analysed with gene set variation analysis (GSVA), and the clinical features of the MCTD subgroups were compared. RESULTS: This study included 215 patients, including 22 patients with MCTD. Machine-learning models, constructed to classify SLE, IIM and SSc patients, based on immunophenotyping, were applied to MCTD patients, resulting in 16 patients being classified as having an SLEimmunophenotype and 6 as having a non-SLE immunophenotype. Among the MCTD patients, patients with the SLE immunophenotype had higher proportions of Th1 cells {2.85% [interquartile range (IQR) 1.54-3.91] vs 1.33% (IQR 0.99-1.74) P = 0.027} and plasmablasts [6.35% (IQR 4.17-17.49) vs 2.00% (IQR 1.20-2.80) P = 0.010]. Notably, the number of SLE-related symptoms was higher in patients with the SLE immunophenotype [2.0 (IQR 1.0-2.0) vs 1.0 (IQR 1.0-1.0) P = 0.038]. Moreover, the GSVA scores of interferon-α and -γ responses were significantly higher in patients with the SLE immunophenotype in central memory CD8+ T cells, while hedgehog signalling was higher in patients with the non-SLE immunophenotype, in five-cell subsets. CONCLUSION: This study describes the stratification of MCTD patients, based on immunophenotyping, suggesting the presence of distinct immunological processes behind the clinical subtypes of MCTD.
-
Annals of the rheumatic diseases 82(11) 1455-1463 2023年11月OBJECTIVES: Despite the involvement of B cells in the pathogenesis of immune-mediated diseases (IMDs), biological mechanisms underlying their function are scarcely understood. To overcome this gap, here we constructed and investigated a large-scale repertoire catalogue of five B cell subsets of patients with IMDs. METHODS: We mapped B cell receptor regions from RNA sequencing data of sorted B cell subsets. Our dataset consisted of 595 donors under IMDs and health. We characterised the repertoire features from various aspects, including their association with immune cell transcriptomes and clinical features and their response to belimumab treatment. RESULTS: Heavy-chain complementarity-determining region 3 (CDR-H3) length among naïve B cells was shortened among autoimmune diseases. Strong negative correlation between interferon signature strength and CDR-H3 length was observed in naïve B cells and suggested the role for interferon in premature B cell development. VDJ gene usage was skewed especially in plasmablasts and unswitched-memory B cells of patients with systemic lupus erythematosus (SLE). We developed a scoring system to quantify this skewing, and it positively correlated with peripheral helper T cell transcriptomic signatures and negatively correlated with the amount of somatic hyper mutations in plasmablasts, suggesting the association of extrafollicular pathway. Further, this skewing led to high usage of IGHV4-34 gene with 9G4 idiotypes in unswitched-memory B cells, which showed a prominent positive correlation with disease activity in SLE. Gene usage skewing in unswitched-memory B cells was ameliorated after belimumab treatment. CONCLUSIONS: Our multimodal repertoire analysis enabled us the system-level understanding of B cell abnormality in diseases.
-
Journal of autoimmunity 139 103085-103085 2023年9月BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by genetic heterogeneity and an interferon (IFN) signature. The overall landscapes of the heritability of SLE remains unclear. OBJECTIVES: To identify and elucidate the biological functions of rare variants underlying SLE, we conducted analyses of patient-derived induced pluripotent stem cells (iPSCs) in combination with genetic analysis. METHODS: Two familial SLE patient- and two healthy donor (HD)-derived iPSCs were established. Type 1 IFN-secreting dendritic cells (DCs) were differentiated from iPSCs. Genetic analyses of SLE-iPSCs, and 117 SLE patients and 107 HDs in the ImmuNexUT database were performed independently. Genome editing of the variants on iPSCs was performed with the CRISPR/Cas9 system. RESULTS: Type 1 IFN secretion was significantly increased in DCs differentiated from SLE-iPSCs compared to HD-iPSCs. Genetic analyses revealed a rare variant in the 2'-5'-Oligoadenylate Synthetase Like (OASL) shared between SLE-iPSCs and another independent SLE patient, and significant accumulation of OASL variants among SLE patients (HD 0.93%, SLE 6.84%, OR 8.387) in the database. Genome editing of mutated OASL 202Q to wild-type 202 R or wild-type OASL 202 R to mutated 202Q resulted in reduced or enhanced Type 1 IFN secretion of DCs. Three other OASL variants (R60W, T261S and A447V) accumulated in SLE patients had also capacities to enhance Type 1 IFN secretion in response to dsRNA. CONCLUSIONS: We established a patient-derived iPSC-based strategy to investigate the linkage of genotype and phenotype in autoimmune diseases. Detailed case-based investigations using patient-derived iPSCs provide information to unveil the heritability of the pathogenesis of autoimmune diseases.
-
Annals of the rheumatic diseases 82(6) 809-819 2023年6月OBJECTIVES: Little is known about the immunology underlying variable treatment response in rheumatoid arthritis (RA). We performed large-scale transcriptome analyses of peripheral blood immune cell subsets to identify immune cells that predict treatment resistance. METHODS: We isolated 18 peripheral blood immune cell subsets of 55 patients with RA requiring addition of new treatment and 39 healthy controls, and performed RNA sequencing. Transcriptome changes in RA and treatment effects were systematically characterised. Association between immune cell gene modules and treatment resistance was evaluated. We validated predictive value of identified parameters for treatment resistance using quantitative PCR (qPCR) and mass cytometric analysis cohorts. We also characterised the identified population by synovial single cell RNA-sequencing analysis. RESULTS: Immune cells of patients with RA were characterised by enhanced interferon and IL6-JAK-STAT3 signalling that demonstrate partial normalisation after treatment. A gene expression module of plasmacytoid dendritic cells (pDC) reflecting the expansion of dendritic cell precursors (pre-DC) exhibited strongest association with treatment resistance. Type I interferon signalling was negatively correlated to pre-DC gene expression. qPCR and mass cytometric analysis in independent cohorts validated that the pre-DC associated gene expression and the proportion of pre-DC were significantly higher before treatment in treatment-resistant patients. A cluster of synovial DCs showed both features of pre-DC and pro-inflammatory conventional DC2s. CONCLUSIONS: An increase in pre-DC in peripheral blood predicted RA treatment resistance. Pre-DC could have pathophysiological relevance to RA treatment response.
-
Journal of autoimmunity 133 102907-102907 2022年12月OBJECTIVE: Human Leukocyte Antigen (HLA) alleles regulate susceptibility to rheumatoid arthritis (RA) and immune-mediated diseases. This study aims to elucidate the impact of HLA alleles to T cell subsets. METHODS: We performed genome-wide and HLA allele association analysis for T cell receptor (TCR) beta chain repertoire in 13 purified T cell subsets from the ImmuNexUT database, consisting of 407 donors with ten immune-mediated diseases and healthy controls. RESULTS: HLA class II alleles were associated with TRBV gene usage and the public clones of CD4 T cells, while HLA class I alleles were associated with CD8 T cells. RA-risk and immune-mediated diseases-risk HLA alleles were associated with TRBV gene usage of naive and effector CD4 T cell subsets and public clones accumulating in Th17. Clonal diversity was independent of HLA alleles and was correlated with transcriptome changes that reflect TCR signaling. CONCLUSION: This study revealed in vivo evidence that both HLA alleles and environmental factors shape naive and effector TCR repertoires in RA and immune-mediated diseases patients.
-
Rheumatology (Oxford, England) 61(10) 4163-4174 2022年10月6日OBJECTIVES: We evaluated flow-cytometric and transcriptome features of peripheral blood immune cells from early-phase (disease duration <5 years) SSc in comparison with late-phase SSc. METHODS: Fifty Japanese patients with SSc (12 early SSc cases and 38 late SSc cases) and 50 age- and sex-matched healthy controls were enrolled. A comparison of flow-cytometric subset proportions and RNA-sequencing of 24 peripheral blood immune cell subsets was performed. We evaluated differentially expressed genes (DEGs), characterized the co-expressed gene modules, and estimated the composition of subpopulations by deconvolution based on single-cell RNA-sequencing data. As a disease control, idiopathic inflammatory myositis (IIM) patients were also evaluated. RESULTS: Analysing the data from early and late SSc, fraction II effector regulatory T cell (Fr. II eTreg) genes showed a remarkable differential gene expression, enriched for genes related to oxidative phosphorylation. Although the flow-cytometric proportion of Fr. II eTregs was not changed in early SSc, deconvolution indicated expansion of the activated subpopulation. Co-expressed gene modules of Fr. II eTregs demonstrated enrichment of the DEGs of early SSc and correlation with the proportion of the activated subpopulation. These results suggested that DEGs in Fr. II eTregs from patients with early SSc were closely associated with the increased proportion of the activated subpopulation. Similar dysregulation of Fr. II eTregs was also observed in data from patients with early IIM. CONCLUSIONS: RNA-seq of immune cells indicated the dysregulation of Fr. II eTregs in early SSc with increased proportion of the activated subpopulation.
-
Cell 185(18) 3375-3389 2022年9月1日Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.
-
Nature communications 13(1) 4659-4659 2022年8月24日Splicing quantitative trait loci (sQTLs) are one of the major causal mechanisms in genome-wide association study (GWAS) loci, but their role in disease pathogenesis is poorly understood. One reason is the complexity of alternative splicing events producing many unknown isoforms. Here, we propose two approaches, namely integration and selection, for this complexity by focusing on protein-structure of isoforms. First, we integrate isoforms with the same coding sequence (CDS) and identify 369-601 integrated-isoform ratio QTLs (i2-rQTLs), which altered protein-structure, in six immune subsets. Second, we select CDS incomplete isoforms annotated in GENCODE and identify 175-337 isoform-ratio QTL (i-rQTL). By comprehensive long-read capture RNA-sequencing among these incomplete isoforms, we reveal 29 full-length isoforms with unannotated CDSs associated with GWAS traits. Furthermore, we show that disease-causal sQTL genes can be identified by evaluating their trans-eQTL effects. Our approaches highlight the understudied role of protein-altering sQTLs and are broadly applicable to other tissues and diseases.
-
Annals of the rheumatic diseases 81(6) 845-853 2022年6月OBJECTIVE: Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease. While the long-term prognosis has greatly improved, better long-term survival is still necessary. The type I interferon (IFN) signature, a prominent feature of SLE, is not an ideal therapeutic target or outcome predictor. To explore immunological pathways in SLE more precisely, we performed transcriptomic, epigenomic and genomic analyses using 19 immune cell subsets from peripheral blood. METHODS: We sorted 19 immune cell subsets and identified the mRNA expression profiles and genetic polymorphisms in 107 patients with SLE and 92 healthy controls. Combined differentially expressed genes and expression quantitative trait loci analysis was conducted to find key driver genes in SLE pathogenesis. RESULTS: We found transcriptomic, epigenetic and genetic importance of oxidative phosphorylation (OXPHOS)/mitochondrial dysfunction in SLE memory B cells. Particularly, we identified an OXPHOS-regulating gene, PRDX6 (peroxiredoxin 6), as a key driver in SLE B cells. Prdx6-deficient B cells showed upregulated mitochondrial respiration as well as antibody production. We revealed OXPHOS signature was associated with type I IFN signalling-related genes (ISRGs) signature in SLE memory B cells. Furthermore, the gene sets related to innate immune signalling among ISRGs presented correlation with OXPHOS and these two signatures showed associations with SLE organ damage as well as specific clinical phenotypes. CONCLUSION: This work elucidated the potential prognostic marker for SLE. Since OXPHOS consists of the electron transport chain, a functional unit in mitochondria, these findings suggest the importance of mitochondrial dysfunction as a key immunological pathway involved in SLE.
-
Cell 184(11) 3006-3021 2021年5月27日Genetic studies have revealed many variant loci that are associated with immune-mediated diseases. To elucidate the disease pathogenesis, it is essential to understand the function of these variants, especially under disease-associated conditions. Here, we performed a large-scale immune cell gene-expression analysis, together with whole-genome sequence analysis. Our dataset consists of 28 distinct immune cell subsets from 337 patients diagnosed with 10 categories of immune-mediated diseases and 79 healthy volunteers. Our dataset captured distinctive gene-expression profiles across immune cell types and diseases. Expression quantitative trait loci (eQTL) analysis revealed dynamic variations of eQTL effects in the context of immunological conditions, as well as cell types. These cell-type-specific and context-dependent eQTLs showed significant enrichment in immune disease-associated genetic variants, and they implicated the disease-relevant cell types, genes, and environment. This atlas deepens our understanding of the immunogenetic functions of disease-associated variants under in vivo disease conditions.
-
Journal of autoimmunity 119 102617-102617 2021年5月OBJECTIVE: Previous gene expression analyses seeking genes specific to antineutrophil cytoplasmic antibody-associated vasculitis (AAV) have been limited due to crude cell separation and the use of microarrays. This study aims to identify AAV-specific gene expression profiles in a way that overcomes those limitations. METHODS: Blood samples were collected from 26 AAV patients and 28 healthy controls (HCs). Neutrophils were isolated by negative selection, whereas 19 subsets of peripheral blood mononuclear cells were sorted by fluorescence assisted cell sorting. RNA-sequencing was then conducted for each sample, and iterative weighted gene correlation network analysis (iterativeWGCNA) and random forest were consecutively applied to identify the most influential gene module in distinguishing AAV from HCs. Correlations of the identified module with clinical parameters were evaluated, and the biological role was assessed with hub gene identification and pathway analysis. Particularly, the module's association with neutrophil extracellular trap formation, NETosis, was analyzed. Finally, the module's overlap with GWAS-identified autoimmune disease genes (GADGs) was assessed for validation. RESULTS: A neutrophil module (Neu_M20) was ranked top in the random forest analysis among 255 modules created by iterativeWGCNA. Neu_M20 correlated with disease activity and neutrophil counts but not with the presence of antineutrophil cytoplasmic antibody. The module comprised pro-inflammatory genes, including those related to NETosis, supported by experimental evidence. The genes in the module significantly overlapped GADGs. CONCLUSION: We identified the distinct group of pro-inflammatory genes in neutrophils, which characterize AAV. Further investigations are warranted to confirm our findings as they could serve as novel therapeutic targets.
-
Journal of autoimmunity 116 102547-102547 2021年1月OBJECTIVE: Immunological disturbances have been reported in systemic sclerosis (SSc). This study assessed the transcriptome disturbances in immune cell subsets in SSc and characterized a disease-related gene network module and immune cell cluster at single cell resolution. METHODS: Twenty-one Japanese SSc patients were enrolled and compared with 13 age- and sex-matched healthy controls (HC). Nineteen peripheral blood immune cell subsets were sorted by flow cytometry and bulk RNA-seq analysis was performed for each. Differential expression and pathway analyses were conducted. Iterative weighted gene correlation network analysis (iWGCNA) of each subset revealed clustered co-expressed gene network modules. Random forest analysis prioritized a disease-related gene module. Single cell RNA-seq analysis of 878 monocytes was integrated with bulk RNA-seq analysis and with a public database for single cell RNA-seq analysis of SSc patients. RESULTS: Inflammatory pathway genes were differentially expressed in widespread immune cell subsets of SSc. An inflammatory gene module from CD16+ monocytes, which included KLF10, PLAUR, JUNB and JUND, showed the greatest discrimination between SSc and HC. One of the clusters of SSc monocytes identified by single-cell RNA-seq analysis characteristically expressed these inflammatory co-expressed genes and was similar to lung infiltrating FCN1hi monocytes expressing IL1B. CONCLUSIONS: Our integrated analysis of bulk and single cell RNA-seq analysis identified an inflammatory gene module and a cluster of monocytes that are relevant to SSc pathophysiology. They could serve as candidate novel therapeutic targets in SSc.
-
Arthritis & rheumatology (Hoboken, N.J.) 70(10) 1695-1696 2018年10月
-
Journal of autoimmunity 89 21-29 2018年5月We analyzed the transcriptome of detailed CD4+ T cell subsets including them after abatacept treatment, and examined the difference among CD4+ T cell subsets and identified gene sets that are closely associated disease activity and abatacept treatment. Seven CD4+ T cell subsets (naive, Th1, Th17, Th1/17, nonTh1/17, Tfh and Treg) were sorted from PBMCs taken from 10 RA patients and 10 healthy controls, and three RA patients donated samples before and 6 months after abatacept treatment. Paired-end RNA sequencing was performed using HiSeq 2500. A total of 149 samples except for 12 outliers were analyzed. Overview of expression pattern of RA revealed that administration of abatacept exerts a large shift toward the expression pattern of HC. Most of differentially expressed gene (DEG) upregulated in RA (n = 1776) were downregulated with abatacept treatment (n = 1349). Inversely, most of DEG downregulated in RA (n = 1860) were upregulated with abatacept treatment (n = 1294). This DEG-based analysis revealed shared pathway changes in RA CD4+ T cell subsets. Knowledge-based pathway analysis revealed the upregulation of activation-related pathways in RA that was substantially ameliorated by abatacept. Weighted gene co-expression network analysis (WGCNA) evaluated CD4+ T cells collectively and identified a gene module that consisted of 227 genes and was correlated with DAS28-CRP (Spearman's rho = 0.46, p = 4 × 10-9) and abatacept administration (Spearman's rho = -0.91, p = 5 × 10-57). The most highly connected 30 genes of this module included ZAP70 and JAK3, and pathway analysis of this module revealed dysregulation of the TCR signaling pathway network, which was ameliorated by abatacept.
-
Nature genetics 49(7) 1120-1125 2017年7月Recent evidence suggests that a substantial portion of complex disease risk alleles modify gene expression in a cell-specific manner. To identify candidate causal genes and biological pathways of immune-related complex diseases, we conducted expression quantitative trait loci (eQTL) analysis on five subsets of immune cells (CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells and monocytes) and unfractionated peripheral blood from 105 healthy Japanese volunteers. We developed a three-step analytical pipeline comprising (i) prediction of individual gene expression using our eQTL database and public epigenomic data, (ii) gene-level association analysis and (iii) prediction of cell-specific pathway activity by integrating the direction of eQTL effects. By applying this pipeline to rheumatoid arthritis data sets, we identified candidate causal genes and a cytokine pathway (upregulation of tumor necrosis factor (TNF) in CD4+ T cells). Our approach is an efficient way to characterize the polygenic contributions and potential biological mechanisms of complex diseases.
-
Arthritis & rheumatology (Hoboken, N.J.) 67(5) 1171-81 2015年5月OBJECTIVE: The balance between effector and regulatory CD4+ T cells plays a key role in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to examine whether the RA autoantigen BiP has epitopes for both effector and regulatory immunities. METHODS: The proliferation and cytokine secretion of peripheral blood mononuclear cells (PBMCs) from HLA-DR4-positive RA patients in response to BiP-derived peptides were examined by (3)H-thymidine uptake and enzyme-linked immunosorbent assay. As a mouse therapeutic model, a BiP-derived peptide was administered orally to mice with collagen-induced arthritis (CIA). RESULTS: Among the peptides examined, BiP(336-355) induced the strongest proliferation of PBMCs from RA patients, but not from healthy donors. The proliferation of PBMCs in response to BiP(336-355) showed a correlation with clinical RA activity and serum anti-BiP/citrullinated BiP antibodies. In contrast, BiP(456-475) induced interleukin-10 (IL-10) secretion from CD25-positive PBMCs obtained from RA patients and healthy donors without inducing cell proliferation, and it actively suppressed the BiP(336-355)-induced proliferation and proinflammatory cytokine secretion by PBMCs. Oral administration of BiP(456-475) to mice with CIA reduced the severity of arthritis and T cell proliferation and increased the secretion of IL-10 from T cells as well as the number of CD4+CD25+FoxP3+ regulatory T cells. CONCLUSION: Effector and regulatory T cells recognized different BiP epitopes. The deviated balance toward BiP-specific effector T cells in RA may be associated with disease activity; therefore, BiP-specific effector or regulatory T cells could be a target of new RA therapies.
-
Annals of the rheumatic diseases 72(7) 1267-9 2013年7月
主要なMISC
111共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2022年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2017年4月 - 2019年3月