基本情報
- 所属
- 自治医科大学 医学部 生化学講座 病態生化学部門/遺伝子治療研究センター 准教授
- 学位
- 博士(医学)(自治医科大学大学院)
- J-GLOBAL ID
- 201401086045181561
- researchmap会員ID
- B000236665
- 外部リンク
研究分野
5経歴
5-
2025年3月 - 現在
-
2021年5月 - 2025年2月
-
2020年1月 - 2021年4月
-
2011年4月 - 2019年12月
-
2010年4月 - 2011年3月
委員歴
2-
2023年10月 - 現在
-
2015年 - 現在
受賞
6論文
42-
Arteriosclerosis, thrombosis, and vascular biology 44(12) 2616-2627 2024年12月BACKGROUND: PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS: We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS: The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP (enhanced green fluorescent protein) sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS: These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
-
Molecular Therapy - Methods & Clinical Development 32(2) 101256-101256 2024年4月 査読有り
-
Blood advances 7(22) 7017-7027 2023年11月28日The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.
-
Molecular Therapy - Methods & Clinical Development 30 502-514 2023年8月
-
PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cellsCommunications Medicine 3(1) 2023年4月19日Abstract Background Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. Methods We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient’s F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. Results Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG–mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. Conclusion A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.
-
The Journal of Gene Medicine 2023年4月12日
-
Molecular therapy. Methods & clinical development 27 404-414 2022年12月8日Adeno-associated virus (AAV) vectors are promising modalities of gene therapy to address unmet medical needs. However, anti-AAV neutralizing antibodies (NAbs) hamper the vector-mediated therapeutic effect. Therefore, NAb prevalence in the target population is vital in designing clinical trials with AAV vectors. Hence, updating the seroprevalence of anti-AAV NAbs, herein we analyzed sera from 100 healthy individuals and 216 hemophiliacs in Japan. In both groups, the overall seroprevalence against various AAV serotypes was 20%-30%, and the ratio of the NAb-positive population increased with age. The seroprevalence did not differ between healthy participants and hemophiliacs and was not biased by the concomitant blood-borne viral infections. The high neutralizing activity, which strongly inhibits the transduction with all serotypes in vitro, was mostly found in people in their 60s or of older age. The multivariate analysis suggested that "60s or older age" was the only independent factor related to the high titer of NAbs. Conversely, a large proportion of younger hemophiliacs was seronegative, rendering them eligible for AAV-mediated gene therapy in Japan. Compared with our previous study, the peak of seroprevalences has shifted to older populations, indicating that natural AAV exposure in the elderly occurred in their youth but not during the last decade.
-
Scientific Reports 11(1) 2021年12月<title>Abstract</title>Coagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the <italic>F8</italic> gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing <italic>F8</italic> conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.
-
Molecular Therapy - Methods & Clinical Development 22 162-171 2021年9月
-
Scandinavian Journal of Immunology 2021年1月12日
-
Clinical & Experimental Immunology 2020年6月19日 査読有り責任著者
-
Immunol. Lett. 211 53-59 2019年 査読有り
-
Cellular immunology 323 41-48 2018年1月 査読有り
-
IMMUNOLOGY LETTERS 165(1) 1-9 2015年5月 査読有り
-
EUROPEAN JOURNAL OF IMMUNOLOGY 45(3) 876-885 2015年3月 査読有り
-
Cytotechnology 66(3) 373-382 2014年5月 査読有り
-
HAEMOPHILIA 20(1) E40-E44 2014年1月 査読有り
-
Immunology 139(1) 48-60 2013年5月 査読有り
-
THROMBOSIS RESEARCH 131(5) 444-449 2013年5月 査読有り
-
HUMAN GENE THERAPY 24(3) 283-294 2013年3月 査読有り
-
Journal of thrombosis and haemostasis : JTH 10(9) 1802-1813 2012年9月 査読有り
-
HAEMOPHILIA 18(3) e323-e330 2012年5月 査読有り
-
Thrombosis research 128(3) 283-292 2011年9月 査読有り
-
THROMBOSIS RESEARCH 127(4) 349-355 2011年4月 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 285(41) 31763-31773 2010年10月 査読有り
-
Biochemical and biophysical research communications 400(3) 323-328 2010年9月 査読有り
-
THROMBOSIS RESEARCH 125(6) 533-537 2010年6月 査読有り
-
PEDIATRIC TRANSPLANTATION 14(3) 369-376 2010年5月 査読有り
-
JOURNAL OF GENE MEDICINE 11(11) 1020-1029 2009年11月 査読有り
-
JOURNAL OF THROMBOSIS AND HAEMOSTASIS 7(5) 811-824 2009年5月 査読有り
-
STROKE 39(12) 3411-3417 2008年12月 査読有り
-
MOLECULAR THERAPY 16(8) 1359-1365 2008年8月 査読有り
-
Thrombosis Research 122(1) 91-97 2008年 査読有り
-
Arteriosclerosis, Thrombosis, and Vascular Biology 27(10) 2266-2272 2007年10月 査読有り
-
THROMBOSIS RESEARCH 118(5) 627-635 2006年 査読有り
MISC
22-
EUROPEAN JOURNAL OF IMMUNOLOGY 46 145-145 2016年8月
-
EUROPEAN JOURNAL OF IMMUNOLOGY 46 444-444 2016年8月
-
EUROPEAN JOURNAL OF IMMUNOLOGY 46 749-750 2016年8月
-
MOLECULAR THERAPY 21 S91-S92 2013年6月
所属学協会
5共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2014年4月 - 2017年3月
-
日本学術振興会 科学研究費助成事業 2012年4月 - 2015年3月