基本情報
- 所属
- 自治医科大学 医学部 生化学講座 機能生化学部門 教授
- J-GLOBAL ID
- 201301025555991898
- researchmap会員ID
- B000227412
- 外部リンク
Research interests: Heart Development, Stem Cells (ES/iPS cells)
Google Scholar - My Citation
http://scholar.google.com/citations?hl=en&user=F_3DQqUAAAAJ
経歴
5-
2025年4月 - 現在
-
2017年12月 - 2025年3月
-
2016年9月 - 2017年11月
-
2011年4月 - 2011年5月
学歴
2-
2006年4月 - 2011年3月
-
1998年4月 - 2004年3月
受賞
10論文
47-
JACC. CardioOncology 2025年5月5日BACKGROUND: Cardiomyocyte loss occurs in acute and chronic cardiac injury, including cardiotoxicity due to chemotherapeutics like doxorubicin, and contributes to heart failure development. There is a pressing need for cardiac-specific therapeutics that target cardiomyocyte loss, preventing chemotherapy complications without compromising chemotherapeutic efficacy. OBJECTIVES: The authors employed massively parallel combinatorial genetic screening to find microRNA (miRNA) combinations that promote cardiomyocyte survival. METHODS: CombiGEM (combinatorial genetics en masse) screening in a cardiomyocyte cell line was followed by validation in the original cell type and screening in primary cardiomyocytes. The top combination was tested in mouse and developing zebrafish models of doxorubicin cardiotoxicity. RNA sequencing provided insight into possible mechanisms. RESULTS: Multiple miRNA combinations protected cardiomyocytes from doxorubicin in vitro. The most effective (miR-222+miR-455) appeared to act synergistically, and mitigated doxorubicin cardiotoxicity phenotypes in murine and zebrafish in vivo models. RNA sequencing revealed overlapping and synergistic regulation of relevant genes and biological processes in cardiomyocytes, including mitochondrial homeostasis, oxidative stress, muscle contraction, and others. CONCLUSIONS: We identified miR-222 and miR-455 as a combination with potential therapeutic applications for cardioprotection. This study furthers our knowledge of the cardiac effects of miRNAs and their combinations and demonstrates the potential of CombiGEM for cardioprotective combinatorial therapeutic discovery.
-
Cell 186(22) 4920-4935 2023年9月29日 査読有りSpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.
-
PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cellsCommunications Medicine 3(1) 2023年4月19日 査読有りAbstract Background Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. Methods We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient’s F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. Results Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG–mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. Conclusion A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.
MISC
3書籍等出版物
5講演・口頭発表等
105-
BMES 2020 Virtual Annual Meeting
-
Frontiers in Genome Engineering 2019 2019年11月27日 招待有り
-
Frontiers in Genome Engineering 2019 2019年11月26日
-
Frontiers in Genome Engineering 2019 2019年11月26日
-
Decoding Molecular Responses to Electrical and Mechanical Stimuli Enhancing Cardiomyocyte Maturation3rd JCS Council Forum on Basic CardioVascular Research 2019年9月8日 招待有り
-
第25回日本遺伝子細胞治療学会学術集会 2019年7月21日
-
International Society for Stem Cell Research 2019 Annual Meeting 2019年6月28日
-
The 4th Annual Meeting of the Japanese Society for Genome Editing 2019年6月5日
-
the 21st American Society of Gene and Cell therapy 2019年5月1日
-
日本遺伝子細胞治療学会学術集会 2018年6月26日
-
International Society for Stem Cell Research 2018 Annual Meeting 2018年6月20日
-
Weinstein Conference 2018年5月16日
-
Activation of the PPAR/PGC1a pathway promotes pluripotent stem cell-derived cardiomyocyte maturationWeinstein Conference 2018年5月16日
-
Weinstein Conference 2018年5月16日
-
International Society for Stem Cell Research 2017 Annual Meeting 2017年6月16日
-
The 13th Nikko International Symposium 2016年10月28日
-
FAES workshop (BioTech 54: Making Cardiomyocytes from iPSCs) 2015年 招待有り
担当経験のある科目(授業)
6共同研究・競争的資金等の研究課題
26-
国立研究開発法人日本医療研究開発機構 再生・細胞医療・遺伝子治療実現加速化プログラム(再生・細胞医療・遺伝子治療研究中核拠点) 2023年9月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2025年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2022年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2024年4月 - 2025年3月