Shuichi Nagashima, Hiroaki Yagyu, Nirei Takahashi, Tomoyuki Kurashina, Manabu Takahashi, Takeshi Tsuchita, Fumiko Tazoe, Xiao Li Wang, Tumenbayar Bayasgalan, Naoko Sato, Kenta Okada, Shoichiro Nagasaka, Takaya Gotoh, Masayuki Kojima, Masanobu Hyodo, Hisanaga Horie, Yoshinori Hosoya, Masaki Okada, Yoshikazu Yasuda, Hiroyuki Fujiwara, Michitaka Ohwada, Sadahiko Iwamoto, Mitsuaki Suzuki, Hideo Nagai, Shun Ishibashi
JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS 18(3) 190-199 2011年 査読有り
Aim: Adipocyte lipolysis is mediated by a family of triglyceride (TG) lipases consisting of hormone-sensitive lipase (LIPE), adipose triglyceride lipase (PNPLA2) and carboxylesterase 1 (CES1); however, little is known about the relationship between the expression of each gene in different depots and TG lipase activity or obesity
Method: We measured both mRNA expression levels of the lipolytic enzymes (LIPE, PNPLA2 and CES1) and TG lipase activities of biopsy samples obtained from subcutaneous, omental and mesenteric adipose tissues of 34 patients who underwent abdominal surgery. The results were correlated with clinical parameters: adiposity measures, parameters for insulin resistance and plasma lipid levels.
Results: PNPLA2 mRNA levels were slightly higher in omental fat than subcutaneous fat. Cytosolic TG lipase activities were positively correlated with the mRNA levels of CES1 in subcutaneous fat and mesenteric fat, while they were correlated with those of PNPLA2 in omental fat. The mRNA levels of LIPE were negatively correlated with various measures of adiposity in subcutaneous fat. The mRNA levels of CES1 were positively correlated with various measures of adiposity, particularly those estimated by CT in the three depots; they were also positively correlated with plasma LDL-cholesterol levels in omental fat. In contrast, the mRNA levels of PNPLA2 were not significantly associated with adiposity.
Conclusions: The positive correlations of the expression of CES1 with cytosolic TG lipase activities as well as with adiposity suggest that CES1 is involved in lipolysis, thereby contributing to the development of obesity-associated phenotypes. On the other hand, the expression of LIPE is negatively correlated with adiposity. These distinct regulatory patterns of lipolytic genes may underlie the complex phenotypes associated with human obesity.