基本情報
- 所属
- 自治医科大学 医学部 生化学講座 機能生化学部門 助教
- 学位
- 博士(生命科学)(2017年3月 東京薬科大学)
- J-GLOBAL ID
- 201801002790088175
- researchmap会員ID
- B000327835
研究分野
8経歴
7-
2025年7月 - 現在
-
2023年1月 - 2025年6月
-
2021年1月 - 2022年12月
-
2020年3月 - 2020年12月
-
2019年9月 - 2020年2月
学歴
2-
2014年4月 - 2017年3月
-
2012年4月 - 2014年3月
委員歴
1-
2024年10月 - 2025年11月
受賞
2論文
19-
JACC. CardioOncology 7(4) 396-410 2025年6月BACKGROUND: Cardiomyocyte loss occurs in acute and chronic cardiac injury, including cardiotoxicity due to chemotherapeutics like doxorubicin, and contributes to heart failure development. There is a pressing need for cardiac-specific therapeutics that target cardiomyocyte loss, preventing chemotherapy complications without compromising chemotherapeutic efficacy. OBJECTIVES: The authors employed massively parallel combinatorial genetic screening to find microRNA (miRNA) combinations that promote cardiomyocyte survival. METHODS: CombiGEM (combinatorial genetics en masse) screening in a cardiomyocyte cell line was followed by validation in the original cell type and screening in primary cardiomyocytes. The top combination was tested in mouse and developing zebrafish models of doxorubicin cardiotoxicity. RNA sequencing provided insight into possible mechanisms. RESULTS: Multiple miRNA combinations protected cardiomyocytes from doxorubicin in vitro. The most effective (miR-222+miR-455) appeared to act synergistically, and mitigated doxorubicin cardiotoxicity phenotypes in murine and zebrafish in vivo models. RNA sequencing revealed overlapping and synergistic regulation of relevant genes and biological processes in cardiomyocytes, including mitochondrial homeostasis, oxidative stress, muscle contraction, and others. CONCLUSIONS: We identified miR-222 and miR-455 as a combination with potential therapeutic applications for cardioprotection. This study furthers our knowledge of the cardiac effects of miRNAs and their combinations and demonstrates the potential of CombiGEM for cardioprotective combinatorial therapeutic discovery.
-
Cell 186(22) 4920-4935 2023年10月26日SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.
-
Genes 14(10) 2023年9月26日Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
-
Molecular genetics and metabolism reports 34 100951-100951 2023年3月Coenzyme Q10 (CoQ10) is involved in ATP production through electron transfer in the mitochondrial respiratory chain complex. CoQ10 receives electrons from respiratory chain complex I and II to become the reduced form, and then transfers electrons at complex III to become the oxidized form. The redox state of CoQ10 has been reported to be a marker of the mitochondrial metabolic state, but to our knowledge, no reports have focused on the individual quantification of reduced and oxidized CoQ10 or the ratio of reduced to total CoQ10 (reduced/total CoQ10) in patients with mitochondrial diseases. We measured reduced and oxidized CoQ10 in skin fibroblasts from 24 mitochondrial disease patients, including 5 primary CoQ10 deficiency patients and 10 respiratory chain complex deficiency patients, and determined the reduced/total CoQ10 ratio. In primary CoQ10 deficiency patients, total CoQ10 levels were significantly decreased, however, the reduced/total CoQ10 ratio was not changed. On the other hand, in mitochondrial disease patients other than primary CoQ10 deficiency patients, total CoQ10 levels did not decrease. However, the reduced/total CoQ10 ratio in patients with respiratory chain complex IV and V deficiency was higher in comparison to those with respiratory chain complex I deficiency. Measurement of CoQ10 in fibroblasts proved useful for the diagnosis of primary CoQ10 deficiency. In addition, the reduced/total CoQ10 ratio may reflect the metabolic status of mitochondrial disease.
-
Philosophical transactions of the Royal Society of London. Series B, Biological sciences 377(1864) 20210325-20210325 2022年11月21日During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
MISC
22所属学協会
5共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2021年3月 - 2023年3月