基本情報
経歴
1-
2017年4月 - 現在
委員歴
7受賞
10-
2018年
-
2018年
-
2012年
-
2010年
論文
109-
Arteriosclerosis, thrombosis, and vascular biology 44(12) 2616-2627 2024年12月BACKGROUND: PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS: We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS: The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP (enhanced green fluorescent protein) sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS: These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
-
日本検査血液学会雑誌 25(2) 343-349 2024年7月血液は血管内腔を循環し,各臓器に物質を運搬して生体の恒常性を維持している.血管が破綻して血液が漏出(出血)すると,これを最小限にするために止血機構がはたらく.止血機構は血小板と凝固因子カスケードによる限局した血栓形成に加えて,抗凝固因子と線溶系,血管内皮細胞が協働して巧妙に調節されている.このように,血液は流動性を保ちつつ,出血時に破綻部位に限局して効率よく血栓を形成する.先天性異常や後天的要因により止血機構のバランスが破綻すると,出血性疾患や血栓症を引き起こす.血栓止血検査は血小板数および機能評価,凝固カスケードに基づく凝固時間,凝固および線溶系の各種分子マーカーの測定など非常に多岐にわたる.得られた検査結果を正しく解釈し,個々の患者の病態を把握する上で,生理的な止血機構への理解は欠かせない.日常診療においては,臨床症状を踏まえつつ,血栓止血検査の結果に基づいて疾患を鑑別し,治療方針を決定する.出血性疾患と血栓症はいずれも患者の生命を危険にさらす重篤な病態であり,早期に診断し,最適な治療を開始する上で,臨床検査の果たす役割は大きい.(著者抄録)
-
J Orthop Sci. S0949-2658(24)00088-5 2024年5月16日 査読有り
-
日本臨床 別冊(血液症候群V) 294-298 2024年3月
-
Blood advances 7(22) 7017-7027 2023年11月28日The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.
-
Cell 186(22) 4920-4935 2023年9月29日 査読有りSpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.
-
Molecular Therapy - Methods & Clinical Development 30 502-514 2023年8月
-
PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cellsCommunications Medicine 3(1) 2023年4月19日Abstract Background Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. Methods We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient’s F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. Results Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG–mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. Conclusion A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.
-
The Journal of Gene Medicine 2023年4月12日
-
Molecular therapy. Methods & clinical development 27 404-414 2022年12月8日 査読有りAdeno-associated virus (AAV) vectors are promising modalities of gene therapy to address unmet medical needs. However, anti-AAV neutralizing antibodies (NAbs) hamper the vector-mediated therapeutic effect. Therefore, NAb prevalence in the target population is vital in designing clinical trials with AAV vectors. Hence, updating the seroprevalence of anti-AAV NAbs, herein we analyzed sera from 100 healthy individuals and 216 hemophiliacs in Japan. In both groups, the overall seroprevalence against various AAV serotypes was 20%-30%, and the ratio of the NAb-positive population increased with age. The seroprevalence did not differ between healthy participants and hemophiliacs and was not biased by the concomitant blood-borne viral infections. The high neutralizing activity, which strongly inhibits the transduction with all serotypes in vitro, was mostly found in people in their 60s or of older age. The multivariate analysis suggested that "60s or older age" was the only independent factor related to the high titer of NAbs. Conversely, a large proportion of younger hemophiliacs was seronegative, rendering them eligible for AAV-mediated gene therapy in Japan. Compared with our previous study, the peak of seroprevalences has shifted to older populations, indicating that natural AAV exposure in the elderly occurred in their youth but not during the last decade.
-
Scientific Reports 12(1) 2022年12月Abstract IκBζ is a transcriptional regulator that augments inflammatory responses from the Toll-like receptor or interleukin signaling. These innate immune responses contribute to the progression of nonalcoholic fatty liver disease (NAFLD); however, the role of IκBζ in the pathogenesis of NAFLD remains elusive. We investigated whether IκBζ was involved in the progression of NAFLD in mice. We generated hepatocyte-specific IκBζ-deficient mice (Alb-Cre; Nfkbizfl/fl) by crossing Nfkbizfl/fl mice with Alb-Cre transgenic mice. NAFLD was induced by feeding the mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). CDAHFD-induced IκBζ expression in the liver was observed in Nfkbizfl/fl mice, but not in Alb-Cre; Nfkbizfl/fl mice. Contrary to our initial expectation, IκBζ deletion in hepatocytes accelerated the progression of NAFLD after CDAHFD treatment. Although the increased expression of inflammatory cytokines and apoptosis-related proteins by CDAHFD remained unchanged between Nfkbizfl/fl and Alb-Cre; Nfkbizfl/fl mice, early-stage steatosis of the liver was significantly augmented in Alb-Cre; Nfkbizfl/fl mice. Overexpression of IκBζ in hepatocytes via the adeno-associated virus vector attenuated liver steatosis caused by the CDAHFD in wild-type C57BL/6 mice. This preventive effect of IκBζ overexpression on steatosis was not observed without transcriptional activity. Microarray analysis revealed a correlation between IκBζ expression and the changes of factors related to triglyceride biosynthesis and lipoprotein uptake. Our data suggest that hepatic IκBζ attenuates the progression of NAFLD possibly through the regulation of the factors related to triglyceride metabolism.
-
日本小児血液・がん学会雑誌 59(5) 355-362 2022年血友病はF8遺伝子(血友病A)またはF9遺伝子(血友病B)の異常によるX連鎖潜性の出血性疾患である.出血時には凝固因子製剤を投与する必要があるだけでなく,重症例では関節出血予防のために生涯にわたり凝固因子製剤を定期的に補充する必要がある.そのため,一回の治療で長期の止血効果が期待できる遺伝子治療の開発が進められている.血友病遺伝子治療では,機能的なF8またはF9 cDNAを搭載したアデノ随伴ウイルス(AAV)ベクターを直接投与する方法が主流である.実際に,AAVベクターを用いた複数の臨床試験が施行され,年単位で血中の持続的な凝固因子の発現が報告されている.このように遺伝子治療は極めて有効な治療法であるが,抗AAV中和抗体保有患者への対応や大量投与時の肝障害の発生など解決すべき課題は残されている.また,治療から長期の効果や安全性についての知見を集積していくことも重要である.近い将来,血友病遺伝子治療薬が上市される見通しであるが,実臨床における遺伝子治療薬の効果や安全性に際しては慎重に議論を進めることが重要である.
-
[Rinsho ketsueki] The Japanese journal of clinical hematology 63(11) 1558-1565 2022年Genome editing has been attracting increasing attention as a new treatment for several refractory diseases since the CRISPR-Cas discovery has facilitated easy modification of target chromosomal DNA. The concept of treating refractory diseases by genome editing has been achieved in various animal models, and genome editing has been applied to human clinical trials for β-thalassemia, sickle cell disease, mucopolysaccharidosis, transthyretin amyloidosis, HIV infection, and CAR-T therapy. The genome editing technology targets the germline in industrial applications in animals and plants and is directed at the chromosomal DNA of the somatic cells in human therapeutic applications. Genome editing therapy for germline cells is currently forbidden due to ethical and safety concerns. Concerns regarding genome editing technology include safety (off-target effects) as well as technical aspects (low homologous recombination). Various technological innovations for genome editing are expected to expand its clinical application to various diseases in the future.
-
Scientific Reports 11(1) 14824-14824 2021年12月 査読有り<title>Abstract</title>Coagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the <italic>F8</italic> gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing <italic>F8</italic> conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.
-
Molecular Therapy - Methods & Clinical Development 22 162-171 2021年9月 査読有りMost gene therapy clinical trials that systemically administered adeno-associated virus (AAV) vector enrolled only patients without anti-AAV-neutralizing antibodies. However, laboratory tests to measure neutralizing antibodies varied among clinical trials and have not been standardized. In this study, we attempted to improve the sensitivity and reproducibility of a cell-based assay to detect neutralizing antibodies and to determine the detection threshold to predict treatment efficacy. Application of the secreted type of NanoLuc and AAV receptor-expressing cells reduced the multiplicity of infection (MOI) for AAV transduction and improved the sensitivity to detect neutralizing antibodies with a low coefficient of variation, whereas the detection threshold could not be improved by the reduction of MOI to <100. After human immunoglobulin administration into mice at various doses, treatment with high-dose AAV8 vector enabled evasion of the inhibitory effect of neutralizing antibodies. Conversely, gene transduction was slightly influenced in the mice treated with low-dose AAV8 vector, even when neutralizing antibodies were determined to be negative in the assay. In conclusion, we developed a reliable and sensitive cell-based assay to measure neutralizing antibodies against AAV and found that the appropriate MOI to detect marginal neutralizing antibodies was 100. Other factors, including noninhibitory antibodies, marginally influence in vivo transduction at low vector doses.
-
Journal of Orthopaedic Science 26(3) 487-493 2021年5月 査読有りBACKGROUND: Research has revealed the crucial roles of inflammasomes in various central nervous system disorders. However, the role of inflammasomes in secondary damage following spinal cord injury (SCI) remains incompletely understood. METHODS: Here, we investigated the role of apoptosis-associated speck-like protein (ASC), an adaptor protein for inflammasome formation, after contusion SCI in ASC homozygous knockout (ASC-/-) mice. Contusion SCI was induced using a force of 60 kdyn, and recovery of open-field locomotor performance was evaluated using the nine-point Basso Mouse Scale (BMS). Bone marrow transplantation (BMT) was performed to create mice chimeric for ASC expression in bone marrow cells. RESULTS: Western blot analysis revealed that protein expression of NLRP3, ASC, Caspase-1, and IL-β were increased in injured spinal cords compared with sham-control spinal cords at 1 day post injury (dpi). Double immunostaining showed that ASC expression was co-localized to cellular constituents of the spinal cord, including NeuN+ neurons, CD11b+ microglia/macrophages, GFAP+ astrocytes, and MOG+ oligodendrocytes. ASC-/- mice had significantly better locomotor function assessed by BMS than wild-type (WT) mice. ASC-/- mice also had significantly reduced levels of Nlrp3, Casp1, IL1b, Il-6, Tnfa, Cxcl1, and Ly6g mRNA compared with WT mice. BMT (WT→ASC-/-) mice had significantly better BMS scores than BMT (WT→WT) mice. BMT (ASC-/-→WT) mice also had significantly better BMS scores than BMT (WT→WT) mice. However, the statistical significance was limited to time points between 7 and 21 dpi. CONCLUSIONS: These results suggest that ASC-dependent inflammasome formation, especially in resident cells of the spinal cord, plays a pivotal role in the progression of secondary damage following SCI.
-
Molecular therapy. Methods & clinical development 20 451-462 2021年3月12日We conducted two lines of genome-editing experiments of mouse hematopoietic stem cells (HSCs) with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9). First, to evaluate the genome-editing efficiency in mouse bona fide HSCs, we knocked out integrin alpha 2b (Itga2b) with Cas9 ribonucleoprotein (Cas9/RNP) and performed serial transplantation in mice. The knockout efficiency was estimated at approximately 15%. Second, giving an example of X-linked severe combined immunodeficiency (X-SCID) as a target genetic disease, we showed a proof-of-concept of universal gene correction, allowing rescue of most of X-SCID mutations, in a completely non-viral setting. We inserted partial cDNA of interleukin-2 receptor gamma chain (Il2rg) into intron 1 of Il2rg via non-homologous end-joining (NHEJ) with Cas9/RNP and a homology-independent targeted integration (HITI)-based construct. Repaired HSCs reconstituted T lymphocytes and thymuses in SCID mice. Our results show that a non-viral genome-editing of HSCs with CRISPR/Cas9 will help cure genetic diseases.
-
Molecular Therapy - Methods & Clinical Development 20 451-462 2021年3月 査読有り
-
Haemophilia : the official journal of the World Federation of Hemophilia Suppl(3) 132-141 2021年2月27日 査読有りGene therapy is an opportunity for haemophilia patients to receive a one-time treatment and have lasting factor levels for years or decades instead of dependence on repeated administration within short intervals and on sustained supply of drug. Great strides have been made in the development of gene therapy for haemophilia in the last decade. Adeno-associated virus (AAV) vector-mediated gene transfer in haemophilia A and B has entered the phase III trial stage. Gene transfer by lentiviral vector or gene editing technologies using factor VIII (FVIII) or IX (FIX) genes are now entering clinical evaluation. It is expected that the first FVIII and FIX gene therapy products will soon be approved and distributed in major markets. Global access to gene therapy is a critical goal. This review presents new and ongoing efforts towards this goal in countries other than North America and Europe. In Japan, researchers, regulators and funders have established a promising gene therapy development platform for multiple diseases including haemophilia. Decades of scientific and clinical research in haemophilia gene therapy in China have led to a recently registered clinical trial of AAV-mediated gene therapy for haemophilia B. Other countries are in earlier phases of building gene therapy programmes or participate in international trials. A phase 2 feasibility trial of AAV-mediated FIX gene therapy in low- and middle-income countries aims to demonstrate that gene therapy could become available in resource-constrained socio-economic settings. The different strategies for establishing gene therapy provide opportunities for closing the global gap in haemophilia care.
-
Biochemical and biophysical research communications 531(2) 125-132 2020年10月15日 査読有りBACKGROUND: Platelets are critical mediators of vascular homeostasis and thrombosis, and also contribute to the development of inflammation. NLRP3 inflammasome is a cytosolic multi-protein complex that consists of NLRP3, ASC and caspase-1, and regulates IL-1β-mediated inflammation. METHOD AND RESULTS: Using two mouse models of thrombosis (i.e., occlusion of the middle cerebral artery and inferior vena cava), we found that thrombus formation was significantly enhanced in ASC-deficient (ASC-/-) mice, compared to that in wild-type (WT) and IL-1β-/- mice. ASC deficiency had no effects on blood coagulation parameters (i.e., prothrombin time [PT] and activated partial thromboplastin time [APTT]). Platelets from WT mice express ASC, but neither NLRP3 nor caspase-1. ASC deficiency significantly enhanced the expression of P-selectin and GPIIb/IIIa in response to a GPVI agonist (collagen-related peptide [CRP]), but not to thrombin, in platelets. CRP induced ASC speck formation in WT platelets. ASC deficiency also enhanced cytosolic Ca2+ elevation and phosphorylation of ERK1/2 and Akt in platelets. CONCLUSION: Our results demonstrate that ASC negatively regulates GPVI signaling in platelets and enhances thrombus formation, independent of NLRP3 inflammasome and IL-1β, and provide novel insights into the link between inflammation and thrombosis.
-
Clinical journal of gastroenterology 13(5) 907-913 2020年10月 査読有りPercutaneous radiofrequency ablation (RFA) is a good indication for hepatocellular carcinoma (HCC) in cases involving ≦ 3 tumors of ≦ 30 mm in size, many hepatologists are hesitant to perform the procedure for patients with hemorrhagic disorders. We herein report the successful treatment of HCC by laparoscopic RFA in a patient with hemophilia A. A 48-year-old man with moderate form of hemophilia A had a single HCC at segment 8. To perform laparoscopic RFA safely, recombinant factor VIII (rFVIII) was administered to maintain factor VIII activity (FVIII:C) > 80% on the operation day and > 40% for 6 days after the operation in accordance with the guidelines. A total of 23,000 units of rFVIII was used. Laparoscopic RFA was completed with an operation time of 105 min and < 10 mL of blood loss. As a result, blood transfusion was not required. At 2 years after the initial treatment, HCC recurred at segment 7. Under rFVIII supplementation, we performed a second laparoscopic RFA without any events. Although partial hepatectomy is the main procedure used to treat HCC in patients with hemophilia, we could reduce in total use of rFVIII, blood and operation time by laparoscopic RFA compared with those in partial hepatectomy.
-
Gene therapy 27(9) 427-434 2020年9月 査読有りAdeno-associated virus (AAV) vectors can transduce hepatocytes efficiently in vivo in various animal species, including humans. Few reports, however, have examined the utility of pigs in gene therapy. Pigs are potentially useful in preclinical studies because of their anatomical and physiological similarity to humans. Here, we evaluated the utility of microminipigs for liver-targeted gene therapy. These pigs were intravenously inoculated with an AAV8 vector encoding the luciferase gene, and gene expression was assessed by an in vivo imaging system. Robust transgene expression was observed almost exclusively in the liver, even though the pig showed a low-titer of neutralizing antibody (NAb) against the AAV8 capsid. We assessed the action of NAbs against AAV, which interfere with AAV vector-mediated gene transfer by intravascular delivery. When a standard dose of vector was administered intravenously, transgene expression was observed in both NAb-negative and low-titer (14×)-positive subjects, whereas gene expression was not observed in animals with higher titers (56×). These results are compatible with our previous observations using nonhuman primates, indicating that pigs are useful in gene therapy experiments, and that the role of low-titer NAb in intravenous administration of the AAV vector shows similarities across species.
-
Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 26(8) 1377-1385 2020年8月 査読有りAdult T cell leukemia/lymphoma (ATL) is an aggressive peripheral T cell neoplasm caused by infection with human T cell lymphotropic virus type-1 (HTLV-1). Its prognosis remains extremely poor. Tax, the most important regulatory protein for HTLV-1, is associated with the aggressive proliferation of host cells and is also a major target antigen for CD8+ cytotoxic T cells (CTLs). Based on our previous findings that Tax-specific CTLs with a T cell receptor (TCR) containing a unique amino-acid sequence motif exhibit strong HLA-A*24:02-restricted, Tax301-309-specific activity against HTLV-1, we aimed to develop a Tax-redirected T cell immunotherapy for ATL. TCR-ɑ/β genes were cloned from a previously established CTL clone and transduced into peripheral blood mononuclear cells (PBMCs) of healthy volunteers using a retroviral siTCR vector. Then the cytotoxic efficacy against HTLV-1-infected T cells or primary ATL cells was assessed both in vitro and in vivo. The redirected CTLs (Tax-siCTLs) produced a large amount of cytokines and showed strong killing activity against ATL/HTLV-1-infected T cells in vitro, although they did not have universal activity against ATL cells. Next, in a xenograft mouse model using an HTLV-1-infected T cell line (MT-2), in all mice treated with Tax-siCTLs, the tumor rapidly diminished and finally disappeared without normal tissue damage, although all mice that were untreated or treated with non-gene-modified PBMCs died because of tumor progression. Our findings confirm that Tax-siCTLs can exert strong anti-ATL/HTLV-1 effects without a significant reaction against normal cells and have the potential to be a novel immunotherapy for ATL patients.
-
International journal of hematology 111(6) 786-794 2020年6月 査読有りPlatelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.
-
Clinical and experimental hypertension (New York, N.Y. : 1993) 42(4) 365-370 2020年5月18日 査読有りBackground: Anticoagulant activity and blood pressure increase in the morning. The aim of this study was to evaluate changes of anticoagulant activity, blood pressure and target organ damage in patients with nonvalvular atrial fibrillation (AF) given combination treatment with Xa inhibitor and antihypertensive agent.Methods: We enrolled 72 patients with nonvalvular AF. Rivaroxaban (10-15 mg) was continuously administered once daily over 8 weeks (study period I). For subjects (n = 50) who exhibited uncontrolled morning hypertension (home systolic blood pressure [SBP]≥125 mmHg) at the end of study period I (at 8 weeks), nifedipine CR (20-40 mg) was added at bedtime, and rivaroxaban administration was continued an additional 8 weeks. We assessed prothrombin fragment 1 + 2 (optimal range: 69-229 pmol/L) and D-dimer (negative D-dimer measurement: <1.0 μg/mL).Results: The percentage of patients with optimal-range prothrombin fragment 1 + 2 was significantly increased at 4 weeks compared to baseline (70.8% vs. 86.1%, p = .033). In period II, office and home morning SBP were reduced at 12 compared to 8 weeks (office SBP: 135.2 ± 15.7 vs. 125.6 ± 18.4mmHg, p < .001; home morning SBP: 133.5 ± 10.5 vs. 119.9 ± 12.1mmHg, p<.001).The percentage of patients with negative D-dimer was increased at 8 weeks compared to baseline (92% vs. 100%, p = .044), and remained at 100% at 16 weeks.Conclusions: Xa inhibitor therapy improved anticoagulant activity, and additional antihypertensive therapy maintained the anticoagulant activity in patients with nonvalvular AF.
-
Molecular brain 13(1) 74-74 2020年5月11日 査読有りPsychoneuroimmunological studies have clearly demonstrated that both cellular and humoral immunity are related to major depression. Soluble ST2 is regarded as a key molecule regulating immune system as well as cell proliferation. Indeed, soluble ST2 is reported to reduce IL-33-induced IL-6 and TNF-α production in macrophages and IL-33-induced IL-5 and IL-13 production in type 2 innate lymphoid cells. Elevated serum concentrations of soluble ST2 have been reported in patients with neuropsychiatric disorders, suggesting pathophysiological roles of soluble ST2 in behavioral phenotypes. Nevertheless, the relation between soluble ST2 and depressive behavior remain to be uncovered. To complement this point, we performed broad behavioral phenotyping, utilizing transgenic mice with a high concentration of serum ST2 in the present study. Soluble ST2 overexpression mice (ST2 Tg mice) were generated on a C3H/HeJ background. ST2 Tg mice crossed onto the BALB/c genetic background were used. Before starting tests, each mouse was observed in a clean cage for a general health check and neurological screening tests. In Experiment I, comprehensive behavioral phenotyping was performed to reveal the role of soluble ST2 on sensorimotor functions, anxiety-like behaviors, depression-like behaviors, social behaviors, and learning and memory functions. In Experiment II, to confirm the role of soluble ST2 on depression-like behaviors, a depression test battery (two bottle choice test, forced swimming test, and tail suspension test) was applied. The general health check indicated good general health and normal gross appearance for ST2 Tg mice. Further, the neurological reflexes of all the mice were normal. We found that soluble ST2 overexpression resulted in decreased social interaction. Moreover, depression-like behaviors of ST2 Tg mice were observed in two well-established behavioral paradigms, the forced swimming test and the tail suspension test. Nevertheless, hedonic reaction to sucrose was observed in ST2 Tg mice similar to WT mice. These results suggest the depression in the ST2 Tg mice. In conclusion, through a series of experiments, we established the animal model for assessing role of soluble ST2 in neuropsychiatric disorders, and revealed the possible involvement of soluble ST2 in depressive behavior.
-
Journal of immunology (Baltimore, Md. : 1950) 204(8) 2033-2042 2020年4月15日 査読有りIκBζ (encoded by the Nfkbiz) is a member of the nuclear IκB family, which is involved in the expression of secondary response genes based on signals from TLR or IL-1R. ST2L, an IL-33R, is a member of the IL-1R family and abundantly expressed in tissue-resident immune cells, such as mast cells and innate lymphoid cells; however, its downstream signaling pathway remains unelucidated. In this study, we examined the role of IκBζ in ST2L-mediated cytokine and chemokine production in mast cells. Murine bone marrow cells were differentiated ex vivo into bone marrow-derived mast cells (BMMCs). The treatment of BMMCs with IL-33 transiently induced robust IκBζ expression. Of the 40 cytokines and chemokines examined using a cytokine and chemokine array, the concentrations of IL-6, IL-13, CCL2, CCL3, and TNF-α in the supernatant were augmented by IL-33. The deletion of IκBζ in BMMCs resulted in a significant reduction of the production of these mediators and the expression of their mRNA. NF-κB p50 but not p65 translocated to the nucleus by IL-33 and was not affected by the deletion of IκBζ. However, induction of IκBζ and the resultant cytokine and chemokine productions were significantly inhibited by pretreatment with an NF-κB inhibitor. The deletion of IκBζ did not affect the phosphorylation of ERK, p38 MAPK, or JNK by IL-33, and the treatment with inhibitors of these mitogen-activated kinases failed to abolish the expression of Nfkbiz Our findings suggest that IκBζ augments IL-33-dependent cytokine and chemokine production in BMMCs through the action of NF-κB.
-
Experimental Animals 69(2) 189-198 2020年 査読有りX-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes.
-
International journal of hematology 111(1) 31-41 2020年1月 査読有りHemophilia is a congenital hemorrhagic disease caused by genetic abnormalities in coagulation factor VIII or factor IX. Current conventional therapy to prevent bleeding requires frequent intravenous injections of coagulation factor concentrates from early childhood. Accordingly, gene therapy for hemophilia remains an exciting future prospect for patients and their families, due to its potential to cure the disease through a one-time treatment. After a series of successes in basic research, recent clinical trials have demonstrated clear efficacy of gene therapy for hemophilia using adeno-associated virus (AAV) vectors. Although this is likely to alter the paradigm of hemophilia care in the near future, it will be important to overcome immune responses against AAV. Gene therapy for hemophilia cannot be given to patients with anti-AAV capsid-neutralizing antibodies, and cellular immunity with CD8+ T cells should be controlled for sustained expression. Furthermore, long-term therapeutic effects should be closely observed because of the failure of the AAV vector genome to replicate during cell division. This review focuses on the basis of gene therapy, current successes of clinical trials, and the future direction of hemophilia gene therapy.
-
Acta haematologica 143(3) 250-259 2020年 査読有りBACKGROUND: Danaparoid sodium and synthetic protease inhibitors (SPIs) have been approved for the treatment of disseminated intravascular coagulation (DIC) in Japan. OBJECTIVES: To compare the clinical results of the treatment of DIC with danaparoid or SPIs. METHODS: We retrospectively examined 188 patients with hematological malignancy-related DIC. RESULTS: DIC resolution rate in the danaparoid group was higher than that in the SPIs group (61.5 vs. 42.6%; p = 0.031) on day 7. Multivariate analysis identified the response to chemotherapy as independent predictive factor for DIC resolution on day 7 (odds ratio, OR, 2.28; 95% confidence interval, CI, 1.21-4.31; p = 0.011). While there was no significant difference in the DIC resolution rate on day 14 (75.0 vs. 62.4%; p = 0.117), in a subgroup analysis of patients who did not show an improvement in the underlying disease, the danaparoid group showed a significantly better DIC resolution rate (OR 3.89; 95% CI 1.15-13.2; p = 0.030). There was no difference in the rate of cumulative mortality from bleeding within 28 days between the 2 groups (6.6 vs. 3.3%; p = 0.278). CONCLUSIONS: Danaparoid may be associated with more frequent resolution of DIC in patients with refractory underlying disease.
-
Scientific reports 9(1) 16024-16024 2019年11月5日 査読有りSpinal cord injury (SCI) is caused by an initial mechanical insult followed by a series of deleterious events that promote the progressive damage of affected tissues. Fibrinolysis, the process by which plasmin degrades cross-linked fibrin clots, has numerous functions in the central nervous system. However, the roles of the fibrinolytic system in SCI pathophysiology remain unknown. We investigated the roles of fibrinolysis in SCI, and explored therapeutic applications targeting fibrinolysis. Plasminogen-deficient (Plg-/-) mice exhibited significantly improved locomotor function in the early phase of SCI (the first 7 days post injury), with significant inhibition of bleeding and vascular permeability, but failed to demonstrate conclusive functional recovery. Consistent with these findings, the short-term administration of tranexamic acid (TXA) in wild-type mice over the first 3 days post injury significantly improved locomotor function after SCI, whereas prolonged TXA administration did not. Prolonged TXA administration resulted in significantly lower levels of matrix metalloproteinase activities in the spinal cord, suggesting that inhibition of the fibrinolytic system impaired tissue remodeling. Our results indicate that the fibrinolytic system has time-dependent biphasic actions following SCI. The temporally optimised modulation of fibrinolytic activity may thus be a novel therapeutic strategy to improve functional outcomes after SCI.
-
Transplantation 103(9) 1834-1843 2019年9月 査読有りBACKGROUND: Chemokines and chemokine receptors are potential targets for the prevention and treatment of graft-versus-host disease (GVHD). The objective of the current study is to determine the clinical relevance of xenogeneic transplantation models in terms of host and donor chemokine profiles and, if this is the case, to assess the clinical efficacy of C-C chemokine receptor (CCR) 5 antagonist maraviroc for the prevention of GVHD using this model. METHODS: Xenogeneic GVHD was induced by intravenous injection of 5 × 10 human pan T cells into NOD/Shi-scid-IL2rγ (NOG) mice or MHC class I/II-deficient NOG mice in the presence or absence of total body irradiation before transplantation. RESULTS: Extensive tissue destruction with human T-cell infiltration was observed throughout the body, particularly in lungs and liver, but relatively mild in gut. Consistent with this finding, quantitative polymerase chain reaction confirmed the upregulation of mouse CXC chemokine ligand (CXCL) 9 and CXCL10 in lungs and CCL4 in lungs and liver but not in gut. The addition of total body irradiation (1) led to the early release of mouse CCL4 and CXCL10, (2) upregulated a number of chemokine-related genes in human T cells, (3) induced higher expression of CCR5 on human CD4 and CD8 T cells and CXCR3 on human CD4 T cells, and (4) promoted their migration and proliferation in organs, resulting in more severe tissue damage. In this context, pharmacological CCR5 blockade neither ameliorated GVHD nor prolonged survival in NOG mice. CONCLUSIONS: Our experimental data do not demonstrate clinical benefit of CCR5 antagonist for the prevention of GVHD in a myeloablative setting.
-
International journal of hematology 109(2) 141-146 2019年2月 査読有りWe evaluated clinical outcomes of disseminated intravascular coagulation (DIC) in patients with hematological malignancies treated with synthetic protease inhibitors (SPIs) and compared the effects of gabexate mesilate (FOY) and nafamostat mesilate (FUT). We retrospectively examined 127 patients [acute myeloid leukemia (n = 48), acute lymphoblastic leukemia (n = 25), and non-Hodgkin lymphoma (n = 54)] with DIC, who were diagnosed according to Japanese Ministry of Health, Labour and Welfare criteria and treated with SPIs [FOY (n = 55) and FUT (n = 72)] at our hospital from 2006 to 2015. The DIC resolution rates on days 7 and 14 were 42.6% and 62.4%, respectively. No significant differences were observed in DIC resolution rates between the FUT and FOY groups [40.3% vs. 45.5% (day 7), P = 0.586; 56.3% vs. 69.8% (day 14), P = 0.179, respectively]. Multivariate analysis revealed that response to chemotherapy was the only independent predictor of DIC resolution on days 7 and 14 (ORR 2.81, 95% CI 1.32-5.98, P = 0.007; ORR 2.51, 95% CI 1.12-5.65, P = 0.026). Resolution of DIC was correlated with improvement of background hematological malignancies, and no significant differences were observed between the two SPIs.
-
Surgical case reports 4(1) 118-118 2018年9月17日 査読有りBACKGROUND: Acquired von Willebrand syndrome (aVWS) is a rare bleeding disorder with laboratory findings similar to those of congenital von Willebrand disease (VWD). Patients with aVWS may require prophylactic treatment to prevent excessive bleeding following surgery. To our knowledge, to date, there have been no reports on perioperative management for breast cancer patients with aVWS. CASE PRESENTATION: A 60-year-old woman with breast cancer was diagnosed with aVWS due to polycythemia vera. Pre-operative laboratory testing showed a high platelet count and low von Willebrand factor (VWF) activity. The VWF activity did not improve despite an attempt to suppress platelet count with hydroxyurea. Therefore, we decided to perioperatively supplement with plasma-derived factor VIII (FVIII) containing von Willebrand factor (FVIII/VWF concentrates) to perform curative surgery for breast cancer safely. Consequently, the patient did not develop hemorrhage during/after surgery and was discharged on postoperative day 7, as planned, without problems. CONCLUSIONS: For a patient with aVWS, which carries a high risk of hemorrhage during the perioperative period, initiation of appropriate management like supplementation of FVIII/VWF concentrates might enable safe curative surgery for breast cancer, and collaboration with the hematology department is critical.
-
International journal of hematology 108(3) 239-245 2018年9月 査読有りJoint bleeding and resultant arthropathy are major determinants of quality of life in haemophilia patients. We previously developed a mesenchymal stromal cell (MSC)-based treatment approach for haemophilic arthropathy in a mouse model of haemophilia A. Here, we evaluated the long-term safety of intra-articular injection of lentivirally transduced autologous MSCs in non-human primates. Autologous bone-marrow-derived MSCs transduced with a lentiviral vector expressing coagulation factor VIII (FVIII) were injected into the left knee joint of cynomolgus monkeys. We first conducted codon optimization to increase FVIII production in the cells. Lentiviral transduction of autologous MSCs resulted in a significant increase of FVIII in the culture supernatant before transplantation. We did not find any tumour generation around the knee structure at 11-16 months after injection by magnetic resonance imaging. The proviral sequence of the simian immunodeficiency virus lentiviral vector was not detected in the heart, lungs, spleen, liver, testis, or bone marrow by real-time quantitative PCR. We confirmed the long-term safety of intra-articular injection of transduced MSCs in a non-human primate. The procedure may be an attractive therapeutic approach for joint diseases in haemophilia patients.
-
International journal of oncology 52(5) 1685-1693 2018年5月 査読有りThe impairment of the stability of the chromosomal structure facilitates the abnormal segregation of chromosomes, thus increasing the risk of carcinogenesis. Chromosomal stability during segregation is managed by appropriate methylation at the centromere of chromosomes. Insufficient methylation, or hypomethylation, results in chromosomal instability. The centromere consists of satellite alpha repetitive sequences, which are ideal targets for DNA hypomethylation, resulting in the overexpression of satellite alpha transcript (SAT). The overexpression of SAT has been reported to induce the abnormal segregation of chromosomes. In this study, we verified the oncogenic pathway via chromosomal instability involving DNA hypomethylation and the overexpression of SAT. For this purpose, we constructed lentiviral vectors expressing SAT and control viruses and then infected human mammary epithelial cells with these vectors. The copy number alterations and segregation errors of chromosomes were evaluated by microarray-based comparative genomic hybridization (array CGH) and immunocytochemistry, respectively. The levels of hypomethylation of satellite alpha sequences were determined by MethyLight polymerase chain reaction. Clinical specimens from 45 patients with breast cancer were recruited to verify the data in vitro. The results of immunocytochemistry revealed that the incidence of segregation errors was significantly higher in the cells overexpressing SAT than in the controls. An array CGH identified the specific chromosomes of 8q and 20q as frequent sites of copy number alterations in cells with SAT overexpression, although no such sites were noted in the controls, which was consistent with the data from clinical specimens. A regression analysis revealed that the expression of SAT was significantly associated with the levels of hypomethylation of satellite alpha sequences. On the whole, the overexpression of SAT led to chromosomal instability via segregation errors at specific chromosomes in connection with DNA hypomethylation, which was also recognized in clinical specimens of patients with breast cancer. Thus, this oncogenic pathway may be involved in the development of breast cancer.
-
Thrombosis journal 16 5-5 2018年 査読有りBackground: Although prasugrel exerts stronger antiplatelet effects compared with clopidogrel, the factors affecting platelet reactivity under prasugrel have not been fully determined. This study aimed to find the novel mechanistic differences between two thienopyridines and identify the factor that influence platelet reactivity to each drug. Methods: Forty patients with stable angina who underwent elective percutaneous coronary intervention were randomly assigned to receive either prasugrel (20 mg) or clopidogrel (300 mg) as a loading dose. Platelet function (light transmission, laser light scattering, and vasodilator-stimulated phosphoprotein phosphorylation) and plasma active metabolite levels were measured after the loading dose. Results: Prasugrel consistently inhibited adenosine diphosphate receptor P2Y12 signalling to abolish amplification of platelet aggregation. Prasugrel abolished even small platelet aggregates composed of less than 100 platelets. On the other hand, clopidogrel inhibited large aggregates but increased small and medium platelet aggregates. Diabetes was the only independent variable for determining antiplatelet effects and active metabolite concentration of prasugrel, but not clopidogrel. Sleep-disordered breathing was significantly correlated with platelet reactivity in patients who had clopidogrel. Conclusions: Prasugrel efficiently abolishes residual P2Y12 signalling that causes small platelet aggregates, but these small aggregates are not inhibited by clopidogrel. Considering the differential effect of diabetes on antiplatelet effects between these two drugs, the pharmacokinetics of prasugrel, other than cytochrome P450 metabolism, might be affected by diabetes. Trial registration: UMIN-CTR UMIN000017624, retrospectively registered 21 May 2015.
-
Scientific reports 7(1) 4159-4159 2017年6月23日 査読有りHaemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.
-
PloS one 12(6) e0179829 2017年 査読有りAlthough bleeding is a common complication of surgery, routine laboratory tests have been demonstrated to have a low ability to predict perioperative bleeding. Better understanding of hemostatic function during surgery would lead to identification of high-risk patients for bleeding. Here, we aimed to elucidate hemostatic mechanisms to determine perioperative bleeding. We prospectively enrolled 104 patients undergoing cervical spinal surgery without bleeding diathesis. Blood sampling was performed just before the operation. Volumes of perioperative blood loss were compared with the results of detailed laboratory tests assessing primary hemostasis, secondary hemostasis, and fibrinolysis. Platelet aggregations induced by several agonists correlated with each other, and only two latent factors determined inter-individual difference. Platelet aggregability independently determined perioperative bleeding. We also identified low levels of plasminogen-activator inhibitor-1 (PAI-1) and α2-plasmin inhibitor to be independent risk factors for intraoperative and postoperative bleeding, respectively. Most important independent factor to determine postoperative bleeding was body weight. Of note, obese patients with low levels of PAI-1 became high-risk patients for bleeding during surgery. Our data suggest that bleeding after surgical procedure may be influenced by inter-individual differences of hemostatic function including platelet function and fibrinolysis, even in the patients without bleeding diathesis.
-
The Journal of cell biology 209(3) 453-66 2015年5月11日 査読有りIntravital visualization of thrombopoiesis revealed that formation of proplatelets, which are cytoplasmic protrusions in bone marrow megakaryocytes (MKs), is dominant in the steady state. However, it was unclear whether this is the only path to platelet biogenesis. We have identified an alternative MK rupture, which entails rapid cytoplasmic fragmentation and release of much larger numbers of platelets, primarily into blood vessels, which is morphologically and temporally different than typical FasL-induced apoptosis. Serum levels of the inflammatory cytokine IL-1α were acutely elevated after platelet loss or administration of an inflammatory stimulus to mice, whereas the MK-regulator thrombopoietin (TPO) was not elevated. Moreover, IL-1α administration rapidly induced MK rupture-dependent thrombopoiesis and increased platelet counts. IL-1α-IL-1R1 signaling activated caspase-3, which reduced plasma membrane stability and appeared to inhibit regulated tubulin expression and proplatelet formation, and ultimately led to MK rupture. Collectively, it appears the balance between TPO and IL-1α determines the MK cellular programming for thrombopoiesis in response to acute and chronic platelet needs.
MISC
66-
MOLECULAR THERAPY 25(5) 93-93 2017年5月
-
MOLECULAR THERAPY 24 S87-S87 2016年5月
書籍等出版物
164講演・口頭発表等
135担当経験のある科目(授業)
4共同研究・競争的資金等の研究課題
10-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2016年4月 - 2019年3月
-
日本学術振興会 科学研究費助成事業 2013年4月 - 2016年3月
-
日本学術振興会 科学研究費助成事業 2012年4月 - 2015年3月
-
日本学術振興会 科学研究費助成事業 2011年 - 2013年