基本情報
研究分野
1経歴
5-
2018年11月 - 現在
-
2015年4月 - 2018年10月
-
2011年4月 - 2015年3月
-
2008年5月 - 2011年3月
-
2008年4月 - 2008年5月
委員歴
3-
2018年4月 - 現在
-
2018年4月 - 2024年3月
-
2016年4月 - 2017年3月
主要な論文
56-
mBio e00339-24 2024年6月12日 筆頭著者責任著者
-
Frontiers in Microbiology 13 765317-765317 2022年3月14日 査読有り筆頭著者
-
Scientific Reports 10(1) 16907-16907 2020年10月 査読有り筆頭著者
-
Nature communications 11(1) 2934-2934 2020年6月10日 査読有りThe emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes.
-
Frontiers in Microbiology 10 2838-2838 2019年 査読有り筆頭著者Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, previously known as CRISPR-C2c2, is the most recently identified RNA-guided RNA-targeting CRISPR-Cas system that has the unique characteristics of both targeted and collateral single-stranded RNA (ssRNA) cleavage activities. This system was first identified in Leptotrichia shahii. Here, the complete whole genome sequences of 11 Leptotrichia strains were determined and compared with 18 publicly available Leptotrichia genomes in regard to the composition, occurrence and diversity of the CRISPR-Cas13a, and other CRISPR-Cas systems. Various types of CRISPR-Cas systems were found to be unevenly distributed among the Leptotrichia genomes, including types I-B (10/29, 34.4%), II-C (1/29, 2.6%), III-A (6/29, 15.4%), III-D (6/29, 15.4%), III-like (3/29, 7.7%), and VI-A (11/29, 37.9%), while 8 strains (20.5%) had no CRISPR-Cas system at all. The Cas13a effectors were found to be highly divergent with amino acid sequence similarities ranging from 61% to 90% to that of L. shahii, but their collateral ssRNA cleavage activities leading to impediment of bacterial growth were conserved. CRISPR-Cas spacers represent a sequential achievement of former intruder encounters, and the retained spacers reflect the evolutionary phylogeny or relatedness of strains. Analysis of spacer contents and numbers among Leptotrichia species showed considerable diversity with only 4.4% of spacers (40/889) were shared by two strains. The organization and distribution of CRISPR-Cas systems (type I-VI) encoded by all registered Leptotrichia species revealed that effector or spacer sequences of the CRISPR-Cas systems were very divergent, and the prevalence of types I, III, and VI was almost equal. There was only one strain carrying type II, while none carried type IV or V. These results provide new insights into the characteristics and divergences of CRISPR-Cas systems among Leptotrichia species.
-
BMC Genomics 19(1) 810-810 2018年11月8日 査読有り筆頭著者BACKGROUND: Staphylococcus caprae is an animal-associated bacterium regarded as part of goats' microflora. Recently, S. caprae has been reported to cause human nosocomial infections such as bacteremia and bone and joint infections. However, the mechanisms responsible for the development of nosocomial infections remain largely unknown. Moreover, the complete genome sequence of S. caprae has not been determined. RESULTS: We determined the complete genome sequences of three methicillin-resistant S. caprae strains isolated from humans and compared these sequences with the genomes of S. epidermidis and S. capitis, both of which are closely related to S. caprae and are inhabitants of human skin capable of causing opportunistic infections. The genomes showed that S. caprae JMUB145, JMUB590, and JMUB898 strains contained circular chromosomes of 2,618,380, 2,629,173, and 2,598,513 bp, respectively. JMUB145 carried type V SCCmec, while JMUB590 and JMUB898 had type IVa SCCmec. A genome-wide phylogenetic SNP tree constructed using 83 complete genome sequences of 24 Staphylococcus species and 2 S. caprae draft genome sequences confirmed that S. caprae is most closely related to S. epidermidis and S. capitis. Comparative complete genome analysis of eight S. epidermidis, three S. capitis and three S. caprae strains revealed that they shared similar virulence factors represented by biofilm formation genes. These factors include wall teichoic acid synthesis genes, poly-gamma-DL-glutamic acid capsule synthesis genes, and other genes encoding nonproteinaceous adhesins. The 17 proteinases/adhesins and extracellular proteins known to be associated with biofilm formation in S. epidermidis were also conserved in these three species, and their biofilm formation could be detected in vitro. Moreover, two virulence-associated gene clusters, the type VII secretion system and capsular polysaccharide biosynthesis gene clusters, identified in S. aureus were present in S. caprae but not in S. epidermidis and S. capitis genomes. CONCLUSION: The complete genome sequences of three methicillin-resistant S. caprae isolates from humans were determined for the first time. Comparative genome analysis revealed that S. caprae is closely related to S. epidermidis and S. capitis at the species level, especially in the ability to form biofilms, which may lead to increased virulence during the development of S. caprae infections.
-
Infection and Immunology 84(8) 2264-2273 2016年8月 査読有り筆頭著者
-
Microbiology and Immunology 60(1) 1-9 2016年1月 招待有り筆頭著者
-
Journal of Infectious Diseases 208(9) 1482-1493 2013年11月1日 査読有り筆頭著者
-
Genome Biology and Evolution 5(9) 1644-1651 2013年 査読有り筆頭著者
-
Plos Pathogens 7(10) e1002287 2011年10月 査読有り筆頭著者
-
PLOS ONE 4(5) e5714 2009年5月 査読有り筆頭著者
-
Journal of Antimicrobial Chemotherapy 60(6) 1384-1387 2007年12月 査読有り筆頭著者
-
Journal of Bacteriology 189(7) 2921-2925 2007年4月 査読有り筆頭著者
-
Journal of Bacteriology 187(11) 3698-3707 2005年6月 査読有り筆頭著者
MISC
71-
日本細菌学雑誌 78(1) 86-86 2023年2月
担当経験のある科目(授業)
1-
細菌学 (自治医科大学)
共同研究・競争的資金等の研究課題
18-
日本学術振興会 科学研究費助成事業 2024年4月 - 2029年3月
-
2024年4月 - 2026年3月
-
日本医療研究開発機構 (AMED) 医薬品研究開発 2021年 - 2026年
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究補助金 2022年8月 - 2024年3月
-
AMED 令和4年度 「新興・再興感染症に対する革新的医薬品等開発推進研究事業」(3次公募) 2022年8月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2021年7月 - 2023年3月
-
日本学術振興会 令和3年度 外国人研究者招へい事業(外国人招へい研究者(長期)) 2021年5月 - 2022年2月
-
武田科学振興財団 医学系研究奨励 2020年 - 2021年
-
日本学術振興会 科学研究費補助金 基盤(C) 2019年 - 2021年
-
日本学術振興会 科学研究費補助金 若手研究(A) 2015年4月 - 2019年3月
-
日本学術振興会 科学研究費補助金 挑戦的研究(萌芽) 2018年 - 2019年
-
AMED 感染症研究革新イニシアティブ J-PRIDE 2017年 - 2019年
-
グラクソ・スミスクライン GSKジャパン研究助成 2015年 - 2016年
-
日本学術振興会 科学研究費補助金 若手研究(B) 2013年4月 - 2015年3月
-
日本学術振興会 科学研究費助成事業 2012年4月 - 2015年3月
-
武田科学振興財団 医学系研究奨励 2014年 - 2015年
-
日本学術振興会 学術振興会特別研究員 DC2 2006年4月 - 2008年3月