研究者業績

中村 幸恵

ナカムラ サチエ  (Sachie Nakamura)

基本情報

所属
自治医科大学 医学部小児科

J-GLOBAL ID
201401088746698154
researchmap会員ID
B000238506

外部リンク

経歴

 4

論文

 11
  • Sachie Nakamura, Yasushi Ito, Hiroko Hayakawa, Shiho Aoki, Takanori Yamagata, Hitoshi Osaka
    Molecular genetics and metabolism reports 34 100954-100954 2023年3月  
    OBJECTIVE: We assessed the usefulness of flow cytometry as a functional assay to measure glucose transporter 1 (GLUT1) levels on the surface of red blood cells (RBCs) from Japanese patients with glucose transporter 1 deficiency syndrome (Glut1DS). METHODS: We recruited 13 genetically confirmed Glut1DS patients with a solute carrier family 2 member 1 (SLC2A1) mutation (eight missense, one frameshift, two nonsense, and two deletion) and one clinically suspected Glut1DS-like patient without an SLC2A1 mutation, and collected whole blood with informed consent. We stained pelleted RBCs (1 μL) from the patients with a Glut1.RBD ligand and anti-glycophorin A antibody, which recognizes a human RBC membrane protein, and analyzed the cells using flow cytometry. RESULTS: Relative GLUT1 levels quantified by flow cytometry in 11 of 13 patients with definite Glut1DS were 90% below those of healthy controls. Relative GLUT1 levels were not reduced in two of 13 Glut1DS patients who had a missense mutation and no intellectual disability and one Glut1DS-like patient without an SLC2A1 mutation. Relative GLUT1 levels were significantly reduced in Glut1DS patients with an SLC2A1 mutation, more severe intellectual disability, and spasticity. CONCLUSIONS: This method to detect GLUT1 levels on RBCs is simple and appears to be an appropriate screening assay to identify severe Glut1DS patients in the early stage before the development of irreversible neurologic damage caused by chronic hypoglycorrhachia.
  • Shinichi Kumagai, Takeshi Nakajima, Kuniko Shimazaki, Takeharu Kakiuchi, Norihiro Harada, Hiroyuki Ohba, Yoshiyuki Onuki, Naomi Takino, Mika Ito, Makoto Sato, Sachie Nakamura, Hitoshi Osaka, Takanori Yamagata, Kensuke Kawai, Shin-Ichi Muramatsu
    The journal of gene medicine 25(1) e3457 2023年1月  
    BACKGROUND: The delivery of adeno-associated virus (AAV) vectors via the cerebrospinal fluid (CSF) has emerged as a valuable method for widespread transduction in the central nervous system. Although infusion into the cerebral ventricles is a common protocol in preclinical studies of small animals, the cisterna magna has been recognized as an alternative target for clinical studies because it can be reached in a less invasive manner using an intrathecal catheter via the subarachnoid space from a lumbar puncture. METHODS: We evaluated the early distribution of fluorine-18-labeled AAV9 vectors infused into the lateral ventricle or cisterna magna of four non-human primates using positron emission tomography. The expression of the green fluorescent protein was immunohistochemically determined. RESULTS: In both approaches, the labeled vectors diffused into the broad arachnoid space around the brain stem and cervical spinal cord within 30 min. Both infusion routes efficiently transduced neurons in the cervical spinal cord. CONCLUSIONS: For gene therapy that primarily targets the cervical spinal cord and brainstem, such as amyotrophic lateral sclerosis, cisterna magna infusion would be a feasible and effective administration method.
  • Sachie Nakamura, Hitoshi Osaka, Shin-Ichi Muramatsu, Naomi Takino, Mika Ito, Eriko F Jimbo, Chika Watanabe, Shuji Hishikawa, Takeshi Nakajima, Takanori Yamagata
    Gene therapy 28(6) 329-338 2021年6月  
    Glucose transporter 1 deficiency syndrome (GLUT1DS) is caused by haplo-insufficiency of SLC2A1, which encodes GLUT1, resulting in impaired hexose transport into the brain. Previously, we generated a tyrosine-mutant AAV9/3 vector in which SLC2A1 was expressed under the control of the endogenous GLUT1 promoter (AAV-GLUT1), and confirmed the improved motor function and cerebrospinal fluid glucose levels of Glut1-deficient mice after cerebroventricular injection of AAV-GLUT1. In preparation for clinical application, we examined the expression of transgenes after intra-cisterna magna injection of AAV-GFP (tyrosine-mutant AAV9/3-GFP with the CMV promoter) and AAV-GLUT1. We injected AAV-GFP or AAV-GLUT1 (1.63 × 1012 vector genomes/kg) into the cisterna magna of pigs to compare differential promoter activity. After AAV-GFP injection, exogenous GFP was expressed in broad areas of the brain and peripheral organs. After AAV-GLUT1 injection, exogenous GLUT1 was expressed predominantly in the brain. At the cellular level, exogenous GLUT1 was mainly expressed in the endothelium, followed by glia and neurons, which was contrasted with the neuronal-predominant expression of GFP by the CMV promotor. We consider intra-cisterna magna injection of AAV-GLUT1 to be a feasible approach for gene therapy of GLUT1DS.
  • Yoshie Kurokawa, Hitoshi Osaka, Takeshi Kouga, Eriko Jimbo, Kazuhiro Muramatsu, Sachie Nakamura, Yuki Takayanagi, Tatsushi Onaka, Shin-Ichi Muramatsu, Takanori Yamagata
    Human gene therapy 32(11-12) 589-598 2021年6月  
    Niemann-Pick disease type C1 (NPC1) is a fatal congenital neurodegenerative disorder caused by mutations in the NPC1 gene, which is involved in cholesterol transport in lysosomes. Broad clinical manifestations of NPC1 include liver failure, pulmonary disorder, neurological deficits, and psychiatric symptoms. The main cause of death in NPC1 patients involves central nervous system (CNS) dysfunction; there is no essential treatment. We generated a tyrosine-mutant adeno-associated virus (AAV) 9/3 vector that expresses human NPC1 under a cytomegalovirus (CMV) promoter (AAV-CMV-hNPC1) and injected it into the left lateral ventricle (5 μL) and cisterna magna (10 μL) of Npc1 homo-knockout (Npc1-/-) mice. Each mouse received total 1.35 × 1011 vector genome on days 4 or 5 of life. AAV-treated Npc1-/- mice (n = 11) had an average survival of >28 weeks, while all saline-treated Npc1-/- mice (n = 11) and untreated Npc1-/- mice (n = 6) died within 16 weeks. Saline-treated and untreated Npc1-/- mice lost body weight from 7 weeks until death. However, the average body weight of AAV-treated Npc1-/- mice increased until 15 weeks. AAV-treated Npc1-/- mice also showed a significant improvement in the rotarod test performance. A pathological analysis at 11 weeks showed that cerebellar Purkinje cells were preserved in AAV-treated Npc1-/- mice. In contrast, untreated Npc1-/- mice showed an almost total loss of cerebellar Purkinje cells. Combined injection into both the lateral ventricle and cisterna magna achieved broader delivery of the vector to the CNS, leading to better outcomes than noted in previous reports, with injection into the lateral ventricles or veins alone. In AAV-treated Npc1-/- mice, vector genome DNA was detected widely in the CNS and liver. Human NPC1 RNA was detected in the brain, liver, lung, and heart. Accumulated unesterified cholesterol in the liver was reduced in the AAV-treated Npc1-/- mice. Our results suggest the feasibility of gene therapy for patients with NPC1.
  • Sachie Nakamura, Shin-Ichi Muramatsu, Naomi Takino, Mika Ito, Eriko F Jimbo, Kuniko Shimazaki, Tatsushi Onaka, Sumio Ohtsuki, Tetsuya Terasaki, Takanori Yamagata, Hitoshi Osaka
    The journal of gene medicine 20(4) e3013 2018年4月  査読有り

MISC

 3

共同研究・競争的資金等の研究課題

 4