分子病態治療研究センター 心血管・遺伝学研究部

松本 歩

マツモト アユミ  (Ayumi Matsumoto)

基本情報

所属
自治医科大学 分子病態治療研究センター 人類遺伝学研究部, 小児科 准教授
学位
医学博士

J-GLOBAL ID
201401087987033653
researchmap会員ID
B000238615

研究キーワード

 2

論文

 38
  • Ayumi Matsumoto, Shintaro Kano, Natsumi Kobayashi, Mitsuru Matsuki, Rieko Furukawa, Hirokazu Yamagishi, Hiroki Yoshinari, Waka Nakata, Hiroko Wakabayashi, Hidetoshi Tsuda, Kazuhisa Watanabe, Hironori Takahashi, Takanori Yamagata, Takayoshi Matsumura, Hitoshi Osaka, Harushi Mori, Sadahiko Iwamoto
    Scientific reports 14(1) 440-440 2024年1月3日  査読有り
    Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene, and female carriers are usually asymptomatic. We describe a 7-month-old female patient with severe intellectual disability, epilepsy, and low levels of serum copper and ceruloplasmin. While heterozygous deletion of exons 16 and 17 of the ATP7A gene was detected in the proband, her mother, and her grandmother, only the proband suffered from Menkes disease clinically. Intriguingly, X chromosome inactivation (XCI) analysis demonstrated that the grandmother and the mother showed skewing of XCI toward the allele with the ATP7A deletion and that the proband had extremely skewed XCI toward the normal allele, resulting in exclusive expression of the pathogenic ATP7A mRNA transcripts. Expression bias analysis and recombination mapping of the X chromosome by the combination of whole genome and RNA sequencing demonstrated that meiotic recombination occurred at Xp21-p22 and Xq26-q28. Assuming that a genetic factor on the X chromosome enhanced or suppressed XCI of its allele, the factor must be on either of the two distal regions derived from her grandfather. Although we were unable to fully uncover the molecular mechanism, we concluded that unfavorable switching of skewed XCI caused Menkes disease in the proband.
  • Kei Wakabayashi, Hitoshi Osaka, Hirokazu Yamagishi, Mari Kuwajima, Takahiro Ikeda, Ayumi Matsumoto, Kazuhiro Muramatsu, Takanori Yamagata
    Epilepsy & Behavior 144 109227-109227 2023年7月  査読有り
  • Noriko Miyake, Yoshinori Tsurusaki, Ryoko Fukai, Itaru Kushima, Nobuhiko Okamoto, Kei Ohashi, Kazuhiko Nakamura, Ryota Hashimoto, Yoko Hiraki, Shuraku Son, Mitsuhiro Kato, Yasunari Sakai, Hitoshi Osaka, Kimiko Deguchi, Toyojiro Matsuishi, Saoko Takeshita, Aviva Fattal-Valevski, Nina Ekhilevitch, Jun Tohyama, Patrick Yap, Wee Teik Keng, Hiroshi Kobayashi, Keiyo Takubo, Takashi Okada, Shinji Saitoh, Yuka Yasuda, Toshiya Murai, Kazuyuki Nakamura, Shouichi Ohga, Ayumi Matsumoto, Ken Inoue, Tomoko Saikusa, Tova Hershkovitz, Yu Kobayashi, Mako Morikawa, Aiko Ito, Toshiro Hara, Yota Uno, Chizuru Seiwa, Kanako Ishizuka, Emi Shirahata, Atsushi Fujita, Eriko Koshimizu, Satoko Miyatake, Atsushi Takata, Takeshi Mizuguchi, Norio Ozaki, Naomichi Matsumoto
    European journal of human genetics : EJHG 2023年3月27日  査読有り
    Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.
  • Ken Yoshida, Kazuha Yokota, Kazuhisa Watanabe, Hidetoshi Tsuda, Ayumi Matsumoto, Hiroaki Mizukami, Sadahiko Iwamoto
    Scientific reports 13(1) 1843-1843 2023年2月1日  査読有り
    Our previous genome-wide association study to explore genetic loci associated with lean nonalcoholic fatty liver disease (NAFLD) in Japan suggested four candidate loci, which were mapped to chr6, chr7, chr12 and chr13. The present study aimed to identify the locus involved functionally in NAFLD around the association signal observed in chr13. Chromosome conformation capture assay and a database survey suggested the intermolecular interaction among DNA fragments in association signals with the adjacent four coding gene promoters. The four genes were further screened by knockdown (KD) in mice using shRNA delivered by an adeno-associated virus vector (AAV8), and KD of G protein-coupled receptor 180 (Gpr180) showed amelioration of hepatic lipid storage. Gpr180 knockout (KO) mice also showed ameliorated hepatic and plasma lipid levels without influencing glucose metabolism after high-fat diet intake. Transcriptome analyses showed downregulation of mTORC1 signaling and cholesterol homeostasis, which was confirmed by weakened phosphorylation of mTOR and decreased activated SREBP1 in Gpr180KO mice and a human hepatoma cell line (Huh7). AAV8-mediated hepatic rescue of GPR180 expression in KO mice showed recovery of plasma and hepatic lipid levels. In conclusion, ablation of GPR180 ameliorated plasma and hepatic lipid levels, which was mediated by downregulation of mTORC1 signaling.
  • Kazuhisa Watanabe, Ayumi Matsumoto, Hidetoshi Tsuda, Sadahiko Iwamoto
    Scientific reports 12(1) 20273-20273 2022年11月24日  査読有り
    We previously revealed that Kbtbd11 mRNA levels increase during 3T3-L1 differentiation and Kbtbd11 knockdown suppresses whereas its overexpression promotes adipogenesis. However, how Kbtbd11 mRNA is regulated during adipocyte differentiation and how the KBTBD11 protein functions in adipocytes remain elusive. This study aimed to examine the transcriptional regulatory mechanism of Kbtbd11 during adipocyte differentiation, KBTBD11-interacting protein functions, and elucidate the role of KBTBD11 in adipocytes. First, we identified the PPRE consensus sequences in the Kbtbd11 exon 1- and intron 1-containing region and demonstrated that PPARγ acts on this region to regulate Kbtbd11 expression. Next, we purified the KBTBD11 protein complex from 3T3-L1 adipocytes and identified heat shock proteins HSC70 and HSP60 as novel KBTBD11-interacting proteins. HSC70 and HSP60 inhibition increased KBTBD11 protein levels that promoted NFATc1 ubiquitination. These data suggest that HSC70 and HSP60 are involved in KBTBD11 stabilization and are responsible for NFATc1 regulation on the protein level. In summary, this study describes first the protein regulatory mechanism of NFATc1 through the HSC70/HSP60-KBTBD11 interaction that could provide a potential new target for the differentiation and proliferation of various cells, including adipocytes and tumors.

MISC

 10

共同研究・競争的資金等の研究課題

 5