研究者業績

山崎 礼二

ヤマザキ レイジ  (Reiji Yamazaki)

基本情報

所属
自治医科大学 医学部 解剖学講座組織学部門 講師
学位
博士(薬学)(東京薬科大学)

研究者番号
00870718
J-GLOBAL ID
201901010102362684
researchmap会員ID
B000348657

経歴

 5

論文

 21
  • Reiji Yamazaki, Nobuhiko Ohno
    Acta histochemica et cytochemica 57(4) 131-135 2024年8月29日  
    Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.
  • Reiji Yamazaki, Nobuhiko Ohno
    Journal of neurochemistry 2024年8月13日  
    Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
  • Reiji Yamazaki, Nobuhiko Ohno
    Acta histochemica et cytochemica 57(1) 1-5 2024年2月29日  査読有り招待有り筆頭著者責任著者
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, characterized by remyelination failure and axonal dysfunction. Remyelination by oligodendrocytes is critical for improvement of neurological deficits associated with demyelination. Rodent models of demyelination are frequently used to develop and evaluate therapies for MS. However, a suitable mouse model for assessing remyelination-associated recovery of motor functions is currently unavailable. In this review, we describe the development of the mouse model of internal capsule (IC) demyelination by focal injection of lysolecithin into brain and its application in the evaluation of drugs for demyelinating diseases. This mouse model exhibits motor deficits and subsequent functional recovery accompanying IC remyelination. Notably, this model shows enhancement of functional recovery as well as tissue regeneration when treated with clemastine, a drug that promotes remyelination. The IC demyelination mouse model should contribute to the development of novel drugs that promote remyelination and ameliorate neurological deficits in demyelinating diseases.
  • Batpurev Battulga, Yasuyuki Osanai, Reiji Yamazaki, Yoshiaki Shinohara, Nobuhiko Ohno
    bioRxiv doi: https://doi.org/10.1101/2023.10.03.560586 2023年10月  
  • Reiji Yamazaki, Yasuyuki Osanai, Tom Kouki, Jeffrey K Huang, Nobuhiko Ohno
    Neurochemistry international 164 105505-105505 2023年2月6日  査読有り筆頭著者責任著者
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system characterized by remyelination failure, axonal degeneration, and progressive worsening of motor functions. Animal models of demyelination are frequently used to develop and evaluate therapies for MS. We recently reported that focal internal capsule (IC) demyelination in mice with lysophosphatidylcholine injection induced acute motor deficits followed by recovery through remyelination. However, it remains unknown whether the IC demyelination mouse model can be used to evaluate changes in motor functions caused by pharmacological treatments that promote remyelination using behavioral testing and histological analysis. In this study, we examined the effect of clemastine, an anti-muscarinic drug that promotes remyelination, in the mouse IC demyelination model. Clemastine administration improved motor function and changed forepaw preference in the IC demyelinated mice. Moreover, clemastine-treated mice showed increased mature oligodendrocyte density, reduced axonal injury, an increased number of myelinated axons and thicker myelin in the IC lesions compared with control (PBS-treated) mice. These results suggest that the lysophosphatidylcholine-induced IC demyelination model is useful for evaluating changes in motor functions following pharmacological treatments that promote remyelination.

MISC

 43

講演・口頭発表等

 51

担当経験のある科目(授業)

 6

共同研究・競争的資金等の研究課題

 17

学術貢献活動

 2

メディア報道

 2