医学部 病理学講座

亜森 マハムット

アモリ マハムット  (Mahmut Amori)

基本情報

所属
自治医科大学 病理学講座 腫瘍病理学 助教
学位
医学博士(2006年3月 東京医科歯科大学)

通称等の別名
Mahmut Yasen
J-GLOBAL ID
200901049124229658
researchmap会員ID
5000036999

研究キーワード

 4

論文

 36
  • Keiichiro Kitahama, Yasuyuki Shigematsu, Emiko Sugawara, Mahmut Amori, Gulanbar Amori, Rumiko Saito, Akihiro Ohmoto, Junji Yonese, Kengo Takeuchi, Kentaro Inamura
    BMC cancer 25(1) 766-766 2025年4月24日  
    BACKGROUND: Small cell carcinoma (SmCC) of the bladder is a rare and aggressive malignancy. Characterizing transcription factor (TF)-defined subtypes may provide insights into its biology and inform targeted therapies. This study investigates lineage-specific TF expression in bladder SmCC, its association with clinicopathological features, and comparisons with prostate SmCC. METHODS: A retrospective analysis was conducted on 9 cases of bladder SmCC and 6 cases of prostate SmCC diagnosed at a single cancer hospital in Japan. Immunohistochemistry was performed for lineage-specific TFs (ASCL1, NEUROD1, POU2F3, and YAP1) and neuroendocrine and other markers. Statistical comparisons were made using Fisher's exact test and independent samples t-tests. RESULTS: Combined SmCC morphology, including urothelial carcinoma (UC) (5 cases) and adenocarcinoma (2 cases), was more frequent in bladder SmCC than in prostate SmCC (78% [7 of 9 cases] vs. 17% [1 of 6 cases], p = 0.041). NEUROD1 was more frequently expressed in bladder SmCC than in prostate SmCC (67% [6 of 9 cases] vs. 0% [0 of 6 cases]; p = 0.028). NEUROD1 expression was more frequent in combined SmCC and UC bladder tumors than in other bladder SmCC tumors (100% [5 of 5 cases] vs. 25% [1 of 4 cases], p = 0.048). Conversely, HNF4A expression was absent in all combined SmCC and UC bladder tumors (0 of 5) but present in 75% (3 of 4) of other bladder SmCC tumors (p = 0.048). In 2 cases of bladder SmCC, NEUROD1 and POU2F3 were expressed in a mutually exclusive manner, with neuroendocrine markers expressed only in the NEUROD1-expressing component. CONCLUSIONS: NEUROD1 is characteristically expressed in bladder SmCC, especially in SmCC combined with UC, suggesting a distinct phenotype from prostate SmCC. These findings highlight the potential for TF-based classification to improve diagnostic accuracy and inform therapeutic strategies.
  • Sumito Saeki, Kohei Kumegawa, Yoko Takahashi, Liying Yang, Tomo Osako, Mahmut Yasen, Kazutaka Otsuji, Kenichi Miyata, Kaoru Yamakawa, Jun Suzuka, Yuri Sakimoto, Yukinori Ozaki, Toshimi Takano, Takeshi Sano, Tetsuo Noda, Shinji Ohno, Ryoji Yao, Takayuki Ueno, Reo Maruyama
    Breast cancer research : BCR 25(1) 21-21 2023年2月21日  
    BACKGROUND: The intratumor heterogeneity (ITH) of cancer cells plays an important role in breast cancer resistance and recurrence. To develop better therapeutic strategies, it is necessary to understand the molecular mechanisms underlying ITH and their functional significance. Patient-derived organoids (PDOs) have recently been utilized in cancer research. They can also be used to study ITH as cancer cell diversity is thought to be maintained within the organoid line. However, no reports investigated intratumor transcriptomic heterogeneity in organoids derived from patients with breast cancer. This study aimed to investigate transcriptomic ITH in breast cancer PDOs. METHODS: We established PDO lines from ten patients with breast cancer and performed single-cell transcriptomic analysis. First, we clustered cancer cells for each PDO using the Seurat package. Then, we defined and compared the cluster-specific gene signature (ClustGS) corresponding to each cell cluster in each PDO. RESULTS: Cancer cells were clustered into 3-6 cell populations with distinct cellular states in each PDO line. We identified 38 clusters with ClustGS in 10 PDO lines and used Jaccard similarity index to compare the similarity of these signatures. We found that 29 signatures could be categorized into 7 shared meta-ClustGSs, such as those related to the cell cycle or epithelial-mesenchymal transition, and 9 signatures were unique to single PDO lines. These unique cell populations appeared to represent the characteristics of the original tumors derived from patients. CONCLUSIONS: We confirmed the existence of transcriptomic ITH in breast cancer PDOs. Some cellular states were commonly observed in multiple PDOs, whereas others were specific to single PDO lines. The combination of these shared and unique cellular states formed the ITH of each PDO.
  • Sophia Subat, Kaoru Mogushi, Mahmut Yasen, Takashi Kohda, Yuichi Ishikawa, Hiroshi Tanaka
    Journal of cancer research and clinical oncology 145(3) 675-684 2019年3月  
    PURPOSE: Recent genetic studies have suggested that tumor suppressor genes are often silenced during carcinogenesis via epigenetic modification caused by methylation of promoter CpG islands. Here, we characterized genes inactivated by DNA methylation in human hepatocellular carcinoma (HCC) to identify the genes and pathways involved in DNA methylation in hepatocellular carcinoma. METHODS: Eight HCC-derived cell lines were treated with a DNA demethylating agent, 5-aza-2'-deoxycytidine. Additionally, 100 pairs of primary HCC and adjacent non-cancerous tissues as well as 15 normal liver tissues were analyzed by comprehensive gene expression analysis using microarrays. Moreover, gene set enrichment analysis identified the major molecular pathways associated with DNA methylation. Validation of gene expression and DNA methylation status was performed by real-time PCR after bisulfite modification. RESULTS: We showed that CXCL2, an immune-related chemokine, expression was significantly downregulated in tumor tissues and also significantly upregulated by DAC treatment in cell lines. Furthermore, we observed a statistically significant difference in methylation status between normal liver tissues and tumor tissues (P < 0.05). In addition, tumors with higher CXCL2 expression included significantly more numbers of multiple tumors than the lower expression group. CONCLUSIONS: We identified CXCL2, an immune-related chemokine, decreased in hepatocellular carcinoma and the regulation mechanism may be controlled by methylation. Further studies should be warranted to examine if and to what extent the gene is actually suppressed by methylation and if there is a possibility that the CXCL2 axis plays a role for diagnosis and treatment of hepatocellular carcinoma.
  • Yasen Mahmut, Hironori Ninomiya, Noriko Motoi, Satoru Itoh, Mutsunori Fujiwara, Yuichi Ishikawa
    CANCER RESEARCH 74(19) 2014年10月  査読有り
  • Sato K, Tanaka S, Mitsunori Y, Mogushi K, Yasen M, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, Tanaka H, Arii S
    Hepatology (Baltimore, Md.) 57(4) 1436-1447 2013年4月  査読有り

MISC

 33

共同研究・競争的資金等の研究課題

 2