基本情報
- 所属
- 自治医科大学 医学部生理学講座生物物理学部門 教授
- 学位
- 工学博士(大阪大学)
- 研究者番号
- 20196439
- J-GLOBAL ID
- 200901080671475544
- researchmap会員ID
- 1000063201
- 外部リンク
研究キーワード
8経歴
1学歴
4-
- 1985年
-
- 1985年
-
- 1983年
-
- 1983年
委員歴
1-
2010年1月 - 現在
論文
91-
Biochemical and Biophysical Research Communications 2025年9月
-
Journal of synchrotron radiation 30(Pt 2) 368-378 2023年3月1日X-ray fluorescence holography (XFH) is a powerful atomic resolution technique capable of directly imaging the local atomic structure around atoms of a target element within a material. Although it is theoretically possible to use XFH to study the local structures of metal clusters in large protein crystals, the experiment has proven difficult to perform, especially on radiation-sensitive proteins. Here, the development of serial X-ray fluorescence holography to allow the direct recording of hologram patterns before the onset of radiation damage is reported. By combining a 2D hybrid detector and the serial data collection used in serial protein crystallography, the X-ray fluorescence hologram can be directly recorded in a fraction of the measurement time needed for conventional XFH measurements. This approach was demonstrated by obtaining the Mn Kα hologram pattern from the protein crystal Photosystem II without any X-ray-induced reduction of the Mn clusters. Furthermore, a method to interpret the fluorescence patterns as real-space projections of the atoms surrounding the Mn emitters has been developed, where the surrounding atoms produce large dark dips along the emitter-scatterer bond directions. This new technique paves the way for future experiments on protein crystals that aim to clarify the local atomic structures of their functional metal clusters, and for other related XFH experiments such as valence-selective XFH or time-resolved XFH.
-
The Journal of Physical Chemistry B 126(51) 10797-10812 2022年12月29日
-
Biochemical and Biophysical Research Communications 635 277-282 2022年12月
-
Biophys. J. 121(14) 2767-2780 2022年6月 査読有り
-
PLOS ONE 17(5) e0261699-e0261699 2022年5月5日We report expression and purification of a FLT3 protein with ITD mutation (FLT3-ITD) with a steady tyrosine kinase activity using a silkworm-baculovirus system, and its application as a fast screening system of tyrosine kinase inhibitors. The FLT3-ITD protein was expressed in Bombyx mori L. pupae infected by gene-modified nucleopolyhedrovirus, and was purified as an active state. We performed an inhibition assay using 17 kinase inhibitors, and succeeded in screening two inhibitors for FLT3-ITD. The result has paved the way for screening FLT3-ITD inhibitors in a fast and easy manner, and also for structural studies.
-
The Journal of Physical Chemistry Letters 12(xxxx) 2172-2176 2021年2月25日 査読有りHydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics. Decoupling of the dynamics between unfreezable and freezable hydration water could be the cause of the distinct contributions of hydration water to protein dynamics.
-
Proceedings of the National Academy of Sciences 117(9) 4741-4748 2020年3月3日 査読有りHemoglobin is one of the best-characterized proteins with respect to structure and function, but the internal ligand diffusion pathways remain obscure and controversial. Here we captured the CO migration processes in the tense (T), relaxed (R), and second relaxed (R2) quaternary structures of human hemoglobin by crystallography using a high-repetition pulsed laser technique at cryogenic temperatures. We found that in each quaternary structure, the photodissociated CO molecules migrate along distinct pathways in the α and β subunits by hopping between the internal cavities with correlated side chain motions of large nonpolar residues, such as α14Trp(A12), α105Leu(G12), β15Trp(A12), and β71Phe(E15). We also observe electron density evidence for the distal histidine [α58/β63His(E7)] swing-out motion regardless of the quaternary structure, although less evident in α subunits than in β subunits, suggesting that some CO molecules have escaped directly through the E7 gate. Remarkably, in T-state Fe(II)-Ni(II) hybrid hemoglobins in which either the α or β subunits contain Ni(II) heme that cannot bind CO, the photodissociated CO molecules not only dock at the cavities in the original Fe(II) subunit, but also escape from the protein matrix and enter the cavities in the adjacent Ni(II) subunit even at 95 K, demonstrating the high gas permeability and porosity of the hemoglobin molecule. Our results provide a comprehensive picture of ligand movements in hemoglobin and highlight the relevance of cavities, nonpolar residues, and distal histidines in facilitating the ligand migration.
-
Science Advances 6(6) eaay2042-eaay2042 2020年2月A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium<italic>Nonlabens marinus</italic>, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues—Cys105, Ser60, Gln224, and Phe90—were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to photostimulation appears to be substantially different from that seen in bacteriorhodopsin.
-
Arteriosclerosis, Thrombosis, and Vascular Biology 38(4) 744-756 2018年4月1日 査読有り
-
JOURNAL OF BIOLOGICAL CHEMISTRY 292(44) 18258-18269 2017年11月 査読有り
-
CRYSTALS 7(9) 2017年9月 査読有り
-
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 114(32) 8562-8567 2017年8月 査読有り
-
JOURNAL OF PHYSICAL CHEMISTRY B 121(34) 8069-8077 2017年8月 査読有り
-
BIOPHYSICAL JOURNAL 112(3) 579A-579A 2017年2月
-
Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacteriumPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 113(24) 6659-6664 2016年6月 査読有り
-
REVIEW OF SCIENTIFIC INSTRUMENTS 87(6) 063707 2016年6月 査読有り
-
日本結晶学会誌 56(4) 253-258 2014年8月31日Today, we can determine the structural basis of a biological molecule by X-ray crystallography or X-ray solution scattering. However, static structures do not say a lot for the realtime transition of the functional dynamics. Here we introduce the pump-probe method using combined single bunch X-ray from synchrotron source and pulsed laser system in sub nanosecond time resolution. Time-resolved X-ray solution scattering measurement of dimeric hemoglobin revealed a spiral motion of two subunits and three intermediate states. The pump-probe method is even powerful technique in the other methods of measurement for the protein dynamics.
-
BIOCHEMISTRY 53(23) 3858-3866 2014年6月 査読有り
-
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 136(13) 5097-5105 2014年4月 査読有り
-
JOURNAL OF PHYSICAL CHEMISTRY B 117(41) 12461-12468 2013年10月 査読有り
-
PLOS ONE 8(4) e60649 2013年4月 査読有り
-
FEBS LETTERS 586(1) 74-78 2012年1月 査読有り
-
The Journal of biological chemistry 286(38) 33661-33668 2011年9月 査読有り
-
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY 66 1144-1152 2010年11月 査読有り
-
JOURNAL OF MOLECULAR BIOLOGY 398(2) 276-291 2010年4月 査読有り
-
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 72(10) 2791-2794 2008年10月 査読有り
-
NATURE 454(7208) 1127-U57 2008年8月 査読有り
-
FEBS LETTERS 582(17) 2668-2672 2008年7月 査読有り
-
BIOCHEMISTRY 47(21) 5784-5794 2008年5月 査読有り
-
JOURNAL OF MOLECULAR BIOLOGY 377(3) 630-635 2008年3月 査読有り
-
Acta Crystallographica Section F: Structural Biology and Crystallization Communications 64 270-273 2008年3月 査読有り
-
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 129(48) 14840-+ 2007年12月 査読有り
-
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS 63 734-736 2007年9月 査読有り
-
JOURNAL OF MOLECULAR BIOLOGY 360(3) 690-701 2006年7月 査読有り
-
BIOCHEMISTRY 43(27) 8711-8717 2004年7月 査読有り
-
生物物理 44(3) 108-112 2004年5月25日The binding of ligands by proteins is accompanied by rapid structural changes that are essential to function. A recent crystallographic study has revealed the ligation-linked protein motions in an allosteric protein, human hemoglobin, in both allosteric forms (T and R) upon photolysis of bound CO at cryogenic temperatures. The results show how differently the α and β subunits, within each allosteric form, respond to loss of ligand, and where the free ligand lies, establishing that the mechanism of protein control of ligand binding is radically different between the subunits.
-
BIOCHEMISTRY 42(32) 9669-9676 2003年8月 査読有り
-
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 100(12) 7039-7044 2003年6月 査読有り
-
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125(13) 3780-3783 2003年4月 査読有り
MISC
39-
日本農芸化学会大会講演要旨集(Web) 2016 2C004 (WEB ONLY) 2016年3月5日
-
1st Asia-Oceania Conference on Neutron Scattering 2011年11月23日
-
ACA 2008 (Meeting of the American Crystallographic Association) 179 2008年
-
IUCr2008 Satellite symposium 2008年
講演・口頭発表等
43担当経験のある科目(授業)
11共同研究・競争的資金等の研究課題
17-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2023年3月
-
文部科学省 科学研究費補助金(基盤研究(C)) 2016年4月 - 2019年3月
-
文部科学省 科学研究費補助金(新学術領域研究) 2014年7月 - 2019年3月
-
文部科学省 科学研究費補助金(新学術領域研究) 2015年4月 - 2017年3月