基本情報
- 所属
- 自治医科大学 分子病態治療研究センター 遺伝子治療研究部 講師
- 学位
- 博士(医学)(2008年3月 東京医科歯科大学)
- 研究者番号
- 20759576
- ORCID ID
https://orcid.org/0000-0002-4936-8186
- J-GLOBAL ID
- 201501081538096585
- researchmap会員ID
- B000246215
- 外部リンク
研究分野
10経歴
5-
2015年3月 - 2018年10月
-
2008年4月 - 2010年3月
-
2004年4月 - 2008年3月
-
2002年4月 - 2004年3月
学歴
3-
2004年4月 - 2008年3月
-
2002年4月 - 2004年3月
-
1998年4月 - 2002年3月
受賞
3論文
36-
Human Gene Therapy 36(11-12) 914-924 2025年6月1日
-
Molecular Neurobiology 61(11) 9623-9632 2024年4月27日Abstract It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
-
Human Gene Therapy 35(5-6) 192-201 2024年3月1日
-
STAR Protocols 4(4) 102542-102542 2023年12月15日 査読有り招待有り筆頭著者責任著者
-
The Journal of Gene Medicine e3560 2023年6月30日 査読有りBACKGROUND: Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A) encoded by the GLA gene. The symptoms of FD occur as a result of the accumulation of globotriaosylceramide (Gb3), comprising a substrate of α-Gal A, in the organs. Adeno-associated virus (AAV)-mediated gene therapy is a promising treatment for FD. METHODS: α-Gal A knockout (GLAko) mice were injected intravenously with AAV2 (1 × 1011 viral genomes [vg]) or AAV9 (1 × 1011 or 2 × 1012 vg) vectors carrying human GLA (AAV-hGLA), and plasma, brain, heart, liver and kidney were tested for α-Gal A activity. The vector genome copy numbers (VGCNs) and Gb3 content in each organ were also examined. RESULTS: The plasma α-Gal A enzymatic activity was three-fold higher in the AAV9 2 × 1012 vg group than wild-type (WT) controls, which was maintained for up to 8 weeks after injection. In the AAV9 2 × 1012 vg group, the level of α-Gal A expression was high in the heart and liver, intermediate in the kidney, and low in the brain. VGCNs in the all organs of the AAV9 2 × 1012 vg group significantly increased compared to the phosphate-buffered-saline (PBS) group. Although Gb3 in the heart, liver and kidney of the AAV9 2 × 1012 vg was reduced compared to PBS group and AAV2 group, and the amount of Gb3 in the brain was not reduced. CONCLUSIONS: Systemic injection of AAV9-hGLA resulted in α-Gal A expression and Gb3 reduction in the organs of GLAko mice. To expect a higher expression of α-Gal A in the brain, the injection dosage, administration route and the timing of injection should be reconsidered.
-
iScience 26(4) 106487-106487 2023年3月 査読有り筆頭著者責任著者
-
Nature Immunology 22(11) 1391-1402 2021年11月 査読有りEpithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.
-
Human Gene Therapy 33(1-2) 76-85 2021年9月15日 査読有りThe safety and high efficiency of adeno-associated virus (AAV) vectors has facilitated their wide-scale use to deliver therapeutic genes for experimental and clinical purposes in diseases affecting the central nervous system (CNS). AAV1, 2, 5, 8, 9, and rh10 are the most commonly used serotypes for CNS applications. Most AAVs are known to transduce genes predominantly into neurons. However, the precise tropism of AAVs in the dentate gyrus (DG), the region where persistent neurogenesis occurs in the adult brain, is not fully understood. We stereotaxically injected 1.5 × 1010 viral genomes of AAV2, 5, or rh10 carrying green fluorescent protein (GFP) into the right side of gerbil hippocampus, and performed immunofluorescent analysis using differentiation stage-specific markers 1 week after injection. We found that AAV5 showed a significantly larger number of double-positive cells for GFP and Sox2 in the DG, compared with the AAV2 and rh10 groups. On the contrary, AAVrh10 presented a substantially larger number of double-positive cells for GFP and NeuN in the DG, compared with AAV2 and AAV5. Our findings indicated that AAV5 showed high transduction efficiency to neural stem cells and precursor cells, whereas AAVrh10 showed much higher efficiency to mature neurons in the DG.
-
Current Biology 31(14) 3086-3097.e7 2021年7月 査読有りAt the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.
-
MACROMOLECULES 49(7) 2618-2629 2016年4月 査読有り
-
EUROPEAN JOURNAL OF IMMUNOLOGY 46(4) 919-928 2016年4月 査読有り
-
CURRENT DRUG TARGETS 17(6) 678-692 2016年 査読有り
-
PLOS PATHOGENS 12(1) e1005357 2016年1月 査読有り
-
CANCER LETTERS 354(2) 272-280 2014年11月 査読有り
-
PLOS ONE 9(5) e97787 2014年5月 査読有り筆頭著者
-
PROTEIN SCIENCE 21 215-215 2012年8月 査読有り
-
BIOPOLYMERS 96(4) 489-490 2011年 査読有り
-
BIOCONJUGATE CHEMISTRY 21(4) 709-714 2010年4月 査読有り
-
PLOS PATHOGENS 5(12) e1000700 2009年12月 査読有り
-
JOURNAL OF IMMUNOLOGY 183(1) 524-532 2009年7月 査読有り筆頭著者
-
FEBS LETTERS 583(8) 1243-1250 2009年4月 査読有り
-
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 48(48) 9164-9166 2009年 査読有り
-
BIOCONJUGATE CHEMISTRY 19(9) 1917-1920 2008年9月 査読有り
-
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 105(1) 294-299 2008年1月 査読有り
-
ORGANIC & BIOMOLECULAR CHEMISTRY 6(23) 4374-4377 2008年 査読有り
-
VIROLOGY 361(2) 325-334 2007年5月 査読有り
-
VACCINE 25(21) 4291-4300 2007年5月 査読有り筆頭著者責任著者
-
BIOMEDICINE & PHARMACOTHERAPY 60(6) 273-276 2006年7月 査読有り
-
BIOMEDICINE & PHARMACOTHERAPY 59 S375-S379 2005年10月 査読有り
-
MEDICAL MICROBIOLOGY AND IMMUNOLOGY 194(4) 175-180 2005年8月 査読有り
-
BLOOD 102(1) 223-228 2003年7月 査読有り
-
JOURNAL OF GENE MEDICINE 5(7) 609-617 2003年7月 査読有り
-
JOURNAL OF GENE MEDICINE 5(5) 438-445 2003年5月 査読有り
MISC
29-
Peptide science : proceedings of the ... Japanese Peptide Symposium 2011 295-296 2012年3月1日
書籍等出版物
2講演・口頭発表等
52-
日本核酸医薬学会 第10回年会 2025年7月2日
-
American Society of Gene + Cell Therapy 28th Annual Meeting 2025年5月14日
所属学協会
8-
2025年6月 - 現在
-
2025年4月 - 現在
-
2024年6月 - 現在
-
2023年6月 - 現在
-
2022年4月 - 現在
共同研究・競争的資金等の研究課題
7-
日本医療研究機構 (AMED) 再生・細胞医療・遺伝子治療実現加速化プログラム(再生・細胞医療・遺伝子治療研究中核拠点) 2023年9月 - 2028年3月
-
国立研究開発法人日本医療研究開発機構 再生・細胞医療・遺伝子治療研究開発課題(基礎応用研究課題) 2023年7月 - 2026年3月
-
タカラバイオ 共同研究 2020年5月 - 2024年4月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2020年4月 - 2023年3月
産業財産権
2メディア報道
2-
AMED, 早稲田大学, 日経新聞, https://www.waseda.jp/top/news/75228 https://www.amed.go.jp/news/release_20211025.html https://www.nikkei.com/article/DGXLRSP620232_V21C21A0000000/ 2021年10月25日 インターネットメディア
その他
1-
2023年5月 - 2023年5月遺伝子治療に用いるアデノ随伴ウイルス(AAV)ベクターの効率の良い産生システムを開発 (大学HP掲載) https://www.jichi.ac.jp/news/research/2023050801/