研究者業績

大野 伸彦

オオノ ノブヒコ  (Nobuhiko Ohno)

基本情報

所属
自治医科大学 医学部解剖学講座組織学部門 教授
生理学研究所 超微形態研究部門 客員教授
学位
医学博士

J-GLOBAL ID
201301039074350199
researchmap会員ID
B000229500

外部リンク

平成7年 3月 筑波大学付属駒場高等学校 卒
平成13年 3月 東京大学医学部医学科 卒
平成13年 6月 東京大学医学部付属病院 内科初期研修医
平成14年 6月 公立昭和病院 内科初期研修医
平成18年 9月 山梨大学大学院 医学工学総合教育部 博士課程修了 医学博士
平成18年 10月 山梨大学大学院 助手 (解剖学講座第一教室)
平成19年 4月 山梨大学大学院 助教 (解剖学講座分子組織学教室)
平成19年 10月 山梨大学大学院 講師 (解剖学講座分子組織学教室)
平成20年 4月 米国クリーブランドクリニック 博士研究員
(平成21年 7月 全米多発性硬化症協会 ポストドクトラルフェローシップ)
平成24年 8月 山梨大学大学院 准教授 (解剖学講座分子組織学教室)
平成25年 4月 自然科学研究機構 生理学研究所 客員准教授
平成28年 4月 生理学研究所 特任准教授 (分子神経生理部門)
平成29年 5月 自治医科大学 准教授 (解剖学講座組織学部門)
平成29年 5月 生理学研究所 兼任准教授 (分子神経生理部門)
平成30年 4月 自治医科大学 教授 (解剖学講座組織学部門)
平成30年 4月 生理学研究所 教授(兼任) (分子細胞生理研究領域)
平成31年 4月 生理学研究所 客員教授 (超微形態研究部門)

学歴

 2

論文

 247
  • Anna Simankova, Norihisa Bizen, Sei Saitoh, Shinsuke Shibata, Nobuhiko Ohno, Manabu Abe, Kenji Sakimura, Hirohide Takebayashi
    Glia 69(11) 2559-2574 2021年7月7日  
    Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation. Although defects in each of these processes result in abnormal oligodendrocyte differentiation and myelination, the involvement of Ddx20 in oligodendrocyte terminal differentiation remains unknown. To address this question, we used Mbp-Cre mice to generate Ddx20 conditional knockout (cKO) mice to allow for the deletion of Ddx20 from mature oligodendrocytes. Mbp-Cre;Ddx20 cKO mice demonstrated small body sizes, behavioral abnormalities, muscle weakness, and short lifespans, with mortality by the age of 2 months old. Histological analyses demonstrated significant reductions in the number of mature oligodendrocytes and drastic reductions in the expression levels of myelin-associated mRNAs, such as Mbp and Plp at postnatal day 42. The number of OPCs did not change. A thin myelin layer was observed for large-diameter axons in Ddx20 cKO mice, based on electron microscopic analysis. A bromodeoxyuridine (BrdU) labeling experiment demonstrated that terminal differentiation was perturbed from ages 2 weeks to 7 weeks in the CNS of Mbp-Cre;Ddx20 cKO mice. The activation of mitogen-activated protein (MAP) kinase, which promotes myelination, was downregulated in the Ddx20 cKO mice based on immunohistochemical detection. These results indicate that Ddx20 is an essential factor for terminal differentiation of oligodendrocytes and maintenance of myelin gene expression.
  • Kazuhiro Shiizaki, Asako Tsubouchi, Yutaka Miura, Kinya Seo, Takahiro Kuchimaru, Hirosaka Hayashi, Yoshitaka Iwazu, Marina Miura, Batpurev Battulga, Nobuhiko Ohno, Toru Hara, Rina Kunishige, Mamiko Masutani, Keita Negishi, Kazuomi Kario, Kazuhiko Kotani, Toshiyuki Yamada, Daisuke Nagata, Issei Komuro, Hiroshi Itoh, Hiroshi Kurosu, Masayuki Murata, Makoto Kuro-O
    The Journal of clinical investigation 131(16) 2021年6月29日  
    The western pattern diet is rich not only in fat and calorie but also in phosphate. Negative impacts of excessive fat and calorie intake on health are widely accepted, whereas potential harms of excessive phosphate intake are poorly recognized. Here we show the mechanism by which dietary phosphate damages the kidney. When phosphate intake was excessive relative to the functioning nephron number, circulating fibroblast growth factor-23 (FGF23), a hormone that increases phosphate excretion per nephron, was increased to maintain phosphate homeostasis. FGF23 suppressed phosphate reabsorption in renal tubules and thus raised the phosphate concentration in the tubular fluid. Once it exceeded a threshold, microscopic particles containing calcium phosphate crystals appeared in the tubular lumen, which damaged tubular cells through binding to Toll-like receptor-4 expressed on them. Persistent tubular damage induced interstitial fibrosis, reduced the nephron number, and further boosted FGF23 to trigger a deterioration spiral leading to progressive nephron loss. In humans, progression of chronic kidney disease (CKD) ensued when the serum FGF23 level exceeded 53 pg/mL. The present study identified the calcium phosphate particles in the renal tubular fluid as an effective therapeutic target to decelerate nephron loss during the course of aging and CKD progression.
  • Tatsuhide Tanaka, Nobuhiko Ohno, Yasuyuki Osanai, Sei Saitoh, Truc Quynh Thai, Kazuya Nishimura, Takeaki Shinjo, Shoko Takemura, Kouko Tatsumi, Akio Wanaka
    Glia 69(10) 2488-2502 2021年6月24日  
    Single oligodendrocytes produce myelin sheaths around multiple axons in the central nervous system. Interfascicular oligodendrocytes (IOs) facilitate nerve conduction, but their detailed morphologies remain largely unknown. In the present study, we three-dimensionally reconstructed IOs in the corpus callosum of adult mouse using serial block face scanning electron microscopy. The cell bodies of IOs were morphologically polarized and extended thick processes from the cytoplasm-rich part of the cell. Processes originating from the cell body of each IO can be classified into two types: one myelinates an axon without branching, while the other type branches and each branch myelinates a distinct axon. Myelin sheaths originating from a particular IO have biased thicknesses, wrapping axons of a limited range of diameters. Consistent with this finding, IOs transduced and visualized with a rabies viral vector expressing GFP showed statistically significant variation in their myelination patterns. We further reconstructed the sheath immediately adjacent to that derived from each of the analyzed IOs; the thicknesses of the pair of sheaths were significantly correlated despite emanating from different IOs. These results suggest that a single axon could regulate myelin sheath thicknesses, even if the sheaths are derived from distinct IOs. Collectively, our results indicate that the IOs have their own myelin profiles defined by myelin thickness and axonal diameter although axons may regulate thickness of myelin sheath.
  • Hiroki Nishida, Nobuhiko Ohno, Federico Caicci, Lucia Manni
    Scientific reports 11(1) 4833-4833 2021年3月1日  
    The larvacean Oikopleura dioica is a planktonic chordate and an emerging model organism with a short life cycle of 5 days that belongs toTunicata (Urochordata), the sister clade of vertebrates. It is characterized by the rapid development of a tadpole-shaped body. Organ formation in the trunk proceeds within 7 h after the hatching of the tailbud larvae at 3 h after fertilization (hpf) and is completed at 10 hpf, giving rise to fully functional juveniles as miniature adult form. Serial block face scanning electron microscopy was used to acquire ~ 2000 serial transverse section images of a 3 hpf larva and a 10 hpf juvenile to characterize the structures and cellular composition of the trunk and organs using 3D images and movies. Germ cells were found to fuse and establish a central syncytial cell in the gonad as early as 10 hpf. Larval development gave rise to functional organs after several rounds of cell division through trunk morphogenesis. The feature would make O. dioica ideal for analyzing cellular behaviors during morphogenetic processes using live imaging. The detailed descriptions of the larvae and juveniles provided in this study can be utilized as the start and end points of organ morphogenesis in this rapidly developing organism.
  • Takeshi Inagaki, Ken Fujiwara, Yoshiaki Shinohara, Morio Azuma, Reiji Yamazaki, Kiyomi Mashima, Atsushi Sakamoto, Takashi Yashiro, Nobuhiko Ohno
    Histochemistry and cell biology 155(4) 503-512 2021年1月4日  
    Hypertension leads to structural remodeling of cerebral blood vessels, which has been implicated in the pathophysiology of cerebrovascular diseases. The remodeling and progression of arteriolosclerosis under hypertension involve fibrosis along with the production of type I collagen around cerebral arterioles. However, the source and regulatory mechanisms of this collagen production remain elusive. In this study, we examined if perivascular macrophages (PVMs) are involved in collagen production around cerebral small vessels in hypertensive SHRSP/Izm rats. Immunoreactivity for type I collagen around cerebral small vessels in 12-week-old hypertensive rats tended to higher than those in 4-week-old hypertensive and 12-week-old control rats. In ultrastructural analyses using transmission electron microscopy, the substantial deposition of collagen fibers could be observed in the intercellular spaces around PVMs near the arterioles of rats with prolonged hypertension. In situ hybridization analyses revealed that cells positive for mRNA of Col1a1, which comprises type I collagen, were observed near cerebral small vessels. The Col1a1-positive cells around cerebral small vessels were colocalized with immunoreactivity for CD206, a marker for PVMs, but not with those for glial fibrillary acidic protein or desmin, markers for other perivascular cells such as astrocytes and vascular smooth muscle cells. These results demonstrated that enhanced production of type I collagen is observed around cerebral small vessels in rats with prolonged hypertension and Col1a1 is expressed by PVMs, and support the concept that PVMs are involved in collagen production and vascular fibrosis under hypertensive conditions.
  • Rintaro Kuroda, Kaoru Tominaga, Katsumi Kasashima, Kenji Kuroiwa, Eiji Sakashita, Hiroko Hayakawa, Tom Kouki, Nobuhiko Ohno, Kensuke Kawai, Hitoshi Endo
    PloS one 16(7) e0255355 2021年  
    Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA). To clarify how mitochondrial dysfunction affects neurogenesis, we induced mitochondrial dysfunction specifically in murine neural stem cells (NSCs) by inactivating Tfam. Tfam inactivation in NSCs resulted in mitochondrial dysfunction by reducing respiratory chain activities and causing a severe deficit in neural differentiation and maturation both in vivo and in vitro. Brain tissue from Tfam-deficient mice exhibited neuronal cell death primarily at layer V and microglia were activated prior to cell death. Cultured Tfam-deficient NSCs showed a reduction in reactive oxygen species produced by the mitochondria. Tfam inactivation during neurogenesis resulted in the accumulation of ATF4 and activation of target gene expression. Therefore, we propose that the integrated stress response (ISR) induced by mitochondrial dysfunction in neurogenesis is activated to protect the progression of neurodegenerative diseases.
  • Mohammad Shahnaij, Mitsuhiro Iyori, Hiroaki Mizukami, Mayu Kajino, Iroha Yamagoshi, Intan Syafira, Yenni Yusuf, Ken Fujiwara, Daisuke S Yamamoto, Hirotomo Kato, Nobuhiko Ohno, Shigeto Yoshida
    Frontiers in immunology 12 612910-612910 2021年  
    Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
  • Sergey Mursalimov, Nobuhiko Ohno, Mami Matsumoto, Sergey Bayborodin, Elena Deineko
    Frontiers in plant science 12 672642-672642 2021年  
    Serial block-face scanning electron microscopy (SBF-SEM) was used here to study tobacco male meiosis. Three-dimensional ultrastructural analyses revealed that intercellular nuclear migration (INM) occurs in 90-100% of tobacco meiocytes. At the very beginning of meiosis, every meiocyte connected with neighboring cells by more than 100 channels was capable of INM. At leptotene and zygotene, the nucleus in most tobacco meiocytes approached the cell wall and formed nuclear protuberances (NPs) that crossed the cell wall through the channels and extended into the cytoplasm of a neighboring cell. The separation of NPs from the migrating nuclei and micronuclei formation were not observed. In some cases, the NPs and nuclei of neighboring cells appeared apposed to each other, and the gap between their nuclear membranes became invisible. At pachytene, NPs retracted into their own cells. After that, the INM stopped. We consider INM a normal part of tobacco meiosis, but the reason for such behavior of nuclei is unclear. The results obtained by SBF-SEM suggest that there are still many unexplored features of plant meiosis hidden by limitations of common types of microscopy and that SBF-SEM can turn over a new leaf in plant meiosis research.
  • Kiyomi Mashima, Iekuni Oh, Ken Fujiwara, Junko Izawa, Norihito Takayama, Hirofumi Nakano, Yasufumi Kawasaki, Daisuke Minakata, Ryoko Yamasaki, Kaoru Morita, Masahiro Ashizawa, Chihiro Yamamoto, Kaoru Hatano, Kazuya Sato, Ken Ohmine, Shin-Ichiro Fujiwara, Nobuhiko Ohno, Yoshinobu Kanda
    PloS one 16(1) e0245232 2021年  
    Graft-versus-host disease is a major complication after allogeneic hematopoietic stem cell transplantation for hematological malignancies. Immunosuppressive drugs, such as anti-thymocyte globulin, alemtuzumab, and post-transplant cyclophosphamide, have been used to prevent graft-versus-host disease in HLA-mismatched haploidentical hematopoietic stem cell transplantation. Here, we investigated whether these drugs could ameliorate graft-versus-host disease without diminishing the graft-versus-leukemia effect by using a xenogeneic transplanted graft-versus-host disease/graft-versus-leukemia model. Anti-thymocyte globulin treatment diminished graft-versus-host disease symptoms, completely depleted the infiltration of inflammatory cells in the liver and intestine, and led to prolonged survival. By contrast, improvement after post-transplant cyclophosphamide treatment remained minimal. Alemtuzumab treatment modestly prolonged survival despite an apparent decrease of Tregs. In the graft-versus-leukemia model, 1.5 to 2.0 mg/kg of anti-thymocyte globulin and 0.6 to 0.9 mg/kg of alemtuzumab reduced graft-versus-host disease with minimal loss of graft-versus-leukemia effect. Mice treated with 400 mg/kg of post-transplant cyclophosphamide did not develop graft-versus-host disease or leukemia, but it was difficult to evaluate the graft-versus-leukemia effect due to the sensitivity of A20 cells to cyclophosphamide. Although the current settings provide narrow optimal therapeutic windows, further studies are warranted to maximize the benefits of each immunosuppressant.
  • 長内 康幸, 山崎 礼二, 幸喜 富, 矢田部 恵, 山本 真理子, 吉村 由美子, 篠原 良章, 大野 伸彦
    日本組織細胞化学会総会・学術集会講演プログラム・予稿集 61回 47-47 2020年12月  
  • 山崎 礼二, 長内 康幸, 幸喜 富, 篠原 良章, 大野 伸彦
    日本組織細胞化学会総会・学術集会講演プログラム・予稿集 61回 55-55 2020年12月  
  • Xiaona Feng, Yasunori Takayama, Nobuhiko Ohno, Hirosato Kanda, Yi Dai, Takaaki Sokabe, Makoto Tominaga
    Communications biology 3(1) 716-716 2020年11月27日  
    Transient receptor potential vanilloid 4 (TRPV4) is a non-selective calcium-permeable cation channel that is widely expressed and activated in various neurons and glial cells in the nervous system. Schwann cells (SCs) are primary glia cells that wrap around axons to form the myelin sheath in the peripheral nervous system. However, whether TRPV4 is expressed and functions in SCs is unclear. Here, we demonstrate functional expression of TRPV4 in mouse SCs and investigated its physiological significance. Deletion of TRPV4 did not affect normal myelin development for SCs in sciatic nerves in mice. However, after sciatic nerve cut injury, TRPV4 expression levels were remarkably increased in SCs following nerve demyelination. Ablation of TRPV4 expression impaired the demyelinating process after nerve injury, resulting in delayed remyelination and functional recovery of sciatic nerves. These results suggest that local activation of TRPV4 could be an attractive pharmacological target for therapeutic intervention after peripheral nerve injury.
  • Ryo Morita, Takeshi A Onuma, Lucia Manni, Nobuhiko Ohno, Hiroki Nishida
    Development genes and evolution 230(5-6) 315-327 2020年11月  査読有り
    Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.
  • Takashi Miyata, Daisuke Hagiwara, Yuichi Hodai, Tsutomu Miwata, Yohei Kawaguchi, Junki Kurimoto, Hajime Ozaki, Kazuki Mitsumoto, Hiroshi Takagi, Hidetaka Suga, Tomoko Kobayashi, Mariko Sugiyama, Takeshi Onoue, Yoshihiro Ito, Shintaro Iwama, Ryoichi Banno, Mami Matsumoto, Natsuko Kawakami, Nobuhiko Ohno, Hirotaka Sakamoto, Hiroshi Arima
    iScience 23(10) 101648-101648 2020年10月23日  
    Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER.
  • Reiji Yamazaki, Nobuhiko Ohno, Jeffrey K Huang
    Journal of neurochemistry 156(6) 917-928 2020年8月4日  査読有り
    Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by accumulated motor disability. However, whether remyelination promotes motor recovery following demyelinating injury remains unclear. Damage to the internal capsule (IC) is known to result in motor impairment in multiple sclerosis and stroke. Here, we induced focal IC demyelination in mice by lysophosphatidylcholine (LPC) injection, and examined its effect on motor behavior. We also compared the effect of LPC-induced IC damage to that produced by endothelin-1 (ET1), a potent vasoconstrictor used in experimental stroke lesions. We found that LPC or ET1 injections induced asymmetric motor deficit at 7 days post-lesion (dpl), and that both lesion types displayed increased microglia/macrophage density, myelin loss, and axonal dystrophy. The motor deficit and lesion pathology remained in ET1-injected mice at 28 dpl. In contrast, LPC-injected mice regained motor function by 28 dpl, with corresponding reduction in activated microglia/macrophage density, and recovery of myelin staining and axonal integrity in lesions. These results suggest that LPC-induced IC demyelination results in acute motor deficit and subsequent recovery through remyelination, and may be used to complement future drug screens to identify drugs for promoting remyelination.
  • Satoshi Shimo, Sei Saitoh, Huy Bang Nguyen, Truc Quynh Thai, Masako Ikutomo, Ken Muramatsu, Nobuhiko Ohno
    Scientific reports 10(1) 12372-12372 2020年7月23日  査読有り
    Diabetes impairs enteric nervous system functions; however, ultrastructural changes underlying the pathophysiology of the myenteric plexus and the effects of sodium-glucose co-transporter (SGLT) inhibitors are poorly understood. This study aimed to investigate three-dimensional ultrastructural changes in axonal varicosities in the myenteric plexus and the effect thereon of the SGLT inhibitor phlorizin in mice fed a high-fat diet (HFD). Three-dimensional ultrastructural analysis using serial block-face imaging revealed that non-treated HFD-fed mice had fewer axonal varicosities and synaptic vesicles in the myenteric plexus than did normal diet-fed control mice. Furthermore, mitochondrial volume was increased and lysosome number decreased in the axons of non-treated HFD-fed mice when compared to those of control mice. Phlorizin treatment restored the axonal varicosities and organelles in HFD-fed mice. Although HFD did not affect the immunolocalisation of PGP9.5, it reduced synaptophysin immunostaining in the myenteric plexus, which was restored by phlorizin treatment. These results suggest that impairment of the axonal varicosities and their synaptic vesicles underlies the damage to the enteric neurons caused by HFD feeding. SGLT inhibitor treatment could restore axonal varicosities and organelles, which may lead to improved gastrointestinal functions in HFD-induced obesity as well as diabetes.
  • Kiyomi Mashima, Morio Azuma, Ken Fujiwara, Takashi Inagaki, Iekuni Oh, Takashi Ikeda, Kento Umino, Hirofumi Nakano, Kaoru Morita, Kazuya Sato, Daisuke Minakata, Ryoko Yamasaki, Masahiro Ashizawa, Chihiro Yamamoto, Shin-Ichiro Fujiwara, Kaoru Hatano, Ken Ohmine, Kazuo Muroi, Nobuhiko Ohno, Yoshinobu Kanda
    Acta histochemica et cytochemica 53(3) 43-53 2020年6月26日  査読有り
    Leukemias are refractory hematopoietic malignancies, for which the development of new therapeutic agents requires in vivo studies using tumor-bearing mouse models. Although several organs are commonly examined in such studies to evaluate the disease course, the effectiveness of interventions and the localization of tumor cells in the affected organs are still unclear. In this study, we histologically examined the distribution of leukemia cells in several organs using two leukemic mouse models produced by the administration of two cell lines (THP-1, a human myelomonocytic leukemia, and A20, a mouse B cell leukemia/lymphoma) to severe immunodeficient mice. Survival of the mice depended on the tumor burden. Although A20 and THP-1 tumor cells massively infiltrated the parenchyma of the liver and spleen at 21 days after transplantation, A20 cells were hardly found in connective tissues in Glisson's capsule in the liver as compared with THP-1 cells. In the bone marrow, there was more severe infiltration of A20 cells than THP-1 cells. THP-1 and A20 cells were widely spread in the lungs, but were rarely observed in the small intestine. These findings suggest that each leukemia model has a unique localization of tumor cells in several affected organs, which could critically affect the disease course and the efficacy of therapeutic agents, including cellular immunotherapies.
  • Naoya Yamada, Takanori Komada, Nobuhiko Ohno, Masafumi Takahashi
    Archives of toxicology 94(6) 2255-2257 2020年6月  
  • Mieko Oka, Satoshi Shimo, Nobuhiko Ohno, Hirohiko Imai, Yu Abekura, Hirokazu Koseki, Haruka Miyata, Kampei Shimizu, Mika Kushamae, Isao Ono, Kazuhiko Nozaki, Akitsugu Kawashima, Takakazu Kawamata, Tomohiro Aoki
    Scientific reports 10(1) 8330-8330 2020年5月20日  査読有り
    Smooth muscle cells (SMCs) are the major type of cells constituting arterial walls and play a role to maintain stiffness via producing extracellular matrix. Here, the loss and degenerative changes of SMCs become the major histopathological features of an intracranial aneurysm (IA), a major cause of subarachnoid hemorrhage. Considering the important role of SMCs and the loss of this type of cells in IA lesions, we in the present study subjected rats to IA models and examined how SMCs behave during disease progression. We found that, at the neck portion of IAs, SMCs accumulated underneath the internal elastic lamina according to disease progression and formed the intimal hyperplasia. As these SMCs were positive for a dedifferentiation marker, myosin heavy chain 10, and contained abundant mitochondria and rough endoplasmic reticulum, SMCs at the intimal hyperplasia were dedifferentiated and activated. Furthermore, dedifferentiated SMCs expressed some pro-inflammatory factors, suggesting the role in the formation of inflammatory microenvironment to promote the disease. Intriguingly, some SMCs at the intimal hyperplasia were positive for CD68 and contained lipid depositions, indicating similarity with atherosclerosis. We next examined a potential factor mediating dedifferentiation and recruitment of SMCs. Platelet derived growth factor (PDGF)-BB was expressed in endothelial cells at the neck portion of lesions where high wall shear stress (WSS) was loaded. PDGF-BB facilitated migration of SMCs across matrigel-coated pores in a transwell system, promoted dedifferentiation of SMCs and induced expression of pro-inflammatory genes in these cells in vitro. Because, in a stenosis model of rats, PDGF-BB expression was expressed in endothelial cells loaded in high WSS regions, and SMCs present nearby were dedifferentiated, hence a correlation existed between high WSS, PDGFB and dedifferentiation in vivo. In conclusion, dedifferentiated SMCs presumably by PDGF-BB produced from high WSS-loaded endothelial cells accumulate in the intimal hyperplasia to form inflammatory microenvironment leading to the progression of the disease.
  • Ken Fujiwara, Takehiro Tsukada, Kotaro Horiguchi, Yoko Fujiwara, Konomi Takemoto, Junko Nio-Kobayashi, Nobuhiko Ohno, Kinji Inoue
    Cell and Tissue Research 2020年5月16日  査読有り
  • Yoshinori Otani, Nobuhiko Ohno, Jingjing Cui, Yoshihide Yamaguchi, Hiroko Baba
    Communications biology 3(1) 121-121 2020年3月13日  査読有り
    Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.
  • Masaaki Nagai, Sei Saitoh, Takashi Takaki, Takaaki Ohbayashi, Osamu Hotta, Nobuhiko Ohno, Kensuke Joh
    Kidney Medicine 2(2) 222-225 2020年3月  査読有り
  • Ariunaa Sampilvanjil, Tadayoshi Karasawa, Naoya Yamada, Takanori Komada, Tsunehito Higashi, Chintogtokh Baatarjav, Sachiko Watanabe, Ryo Kamata, Nobuhiko Ohno, Masafumi Takahashi
    American journal of physiology. Heart and circulatory physiology 318(3) H508-H518 2020年3月1日  査読有り
    Cigarette smoking is a major risk factor for aortic aneurysm and dissection; however, no causative link between smoking and these aortic disorders has been proven. In the present study, we investigated the mechanism by which cigarette smoke affects vascular wall cells and found that cigarette smoke extract (CSE) induced a novel form of regulated cell death termed ferroptosis in vascular smooth muscle cells (VSMCs). CSE markedly induced cell death in A7r5 cells and primary rat VSMCs, but not in endothelial cells, which was completely inhibited by specific ferroptosis inhibitors [ferrostatin-1 (Fer-1) and Liproxstatin-1] and an iron chelator (deferoxamine). CSE-induced VSMC death was partially inhibited by a GSH precursor (N-acetyl cysteine) and an NADPH oxidase inhibitor [diphenyleneiodonium chloride (DPI)], but not by inhibitors of pan-caspases (Z-VAD), caspase-1 (Z-YVAD), or necroptosis (necrostatin-1). CSE also upregulated IL-1β, IL-6, TNF-α, matrix metalloproteinase (MMP)-2, MMP-9, and TIMP-1 (tissue inhibitor of metalloproteinase)in A7r5 cells, which was inhibited by Fer-1. Furthermore, CSE induced the upregulation of Ptgs2 mRNA, lipid peroxidation, and intracellular GSH depletion, which are key features of ferroptosis. VSMC ferroptosis was induced by acrolein and methyl vinyl ketone, major constituents of CSE. Furthermore, CSE caused medial VSMC loss in ex vivo aortas. Electron microscopy analysis showed mitochondrial damage and fragmentation in medial VSMCs of CSE-treated aortas. All of these manifestations were partially restored by Fer-1. These findings demonstrate that ferroptosis is responsible for CSE-induced VSMC death and suggest that ferroptosis is a potential therapeutic target for preventing aortic aneurysm and dissection.NEW & NOTEWORTHY Cigarette smoke extract (CSE)-induced cell death in rat vascular smooth muscle cells (VSMCs) was completely inhibited by specific ferroptosis inhibitors and an iron chelator. CSE also induced the upregulation of Ptgs2 mRNA, lipid peroxidation, and intracellular GSH depletion, which are key features of ferroptosis. CSE caused medial VSMC loss in ex vivo aortas. These findings demonstrate that ferroptosis is responsible for CSE-induced VSMC death.
  • Hirokazu Koseki, Haruka Miyata, Satoshi Shimo, Nobuhiko Ohno, Kazuma Mifune, Kenjiro Shimano, Kimiko Yamamoto, Kazuhiko Nozaki, Hidetoshi Kasuya, Shuh Narumiya, Tomohiro Aoki
    Translational stroke research 11(1) 80-92 2020年2月  査読有り
    Intracranial aneurysm (IA) usually induced at a bifurcation site of intracranial arteries causes a lethal subarachnoid hemorrhage. Currently, IA is considered as a macrophage-mediated inflammatory disease triggered by a high wall shear stress (WSS) on endothelial cells. However, considered the fact that a high WSS can be observed at every bifurcation site, some other factors are required to develop IAs. We therefore aimed to clarify mechanisms underlying the initiation of IAs using a rat model. We found the transient outward bulging and excessive mechanical stretch at a prospective site of IA formation. Fibroblasts at the adventitia of IA walls were activated and produced (C-C motif) ligand 2 (CCL2) as well in endothelial cells loaded on high WSS at the earliest stage. Consistently, the mechanical stretch induced production of CCL2 in primary culture of fibroblasts and promoted migration of macrophages in a Transwell system. Our results suggest that distinct hemodynamic forces, mechanical stretch on fibroblasts and high WSS on endothelial cells, regulate macrophage-mediated IA formation.
  • Naoya Yamada, Tadayoshi Karasawa, Taiichi Wakiya, Ai Sadatomo, Homare Ito, Ryo Kamata, Sachiko Watanabe, Takanori Komada, Hiroaki Kimura, Yukihiro Sanada, Yasunaru Sakuma, Koichi Mizuta, Nobuhiko Ohno, Naohiro Sata, Masafumi Takahashi
    American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 20(6) 1606-1618 2020年1月7日  査読有り
    Hepatic ischemia-reperfusion (I/R) injury is a major problem in liver transplantation (LT). Although hepatocyte cell death is the initial event in hepatic I/R injury, the underlying mechanism remains unclear. In the present study, we retrospectively analyzed the clinical data of 202 pediatric living donor LT and found that a high serum ferritin level, a marker of iron overload, of the donor is an independent risk factor for liver damage after LT. Since ferroptosis has been recently discovered as an iron-dependent cell death that is triggered by a loss of cellular redox homeostasis, we investigated the role of ferroptosis in a murine model of hepatic I/R injury, and found that liver damage, lipid peroxidation, and upregulation of the ferroptosis marker Ptgs2 were induced by I/R, and all of these manifestations were markedly prevented by the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or α-tocopherol. Fer-1 also inhibited hepatic I/R-induced inflammatory responses. Furthermore, hepatic I/R injury was attenuated by iron chelation by deferoxamine and exacerbated by iron overload with a high iron diet. These findings demonstrate that iron overload is a novel risk factor for hepatic I/R injury in LT, and ferroptosis contributes to the pathogenesis of hepatic I/R injury.
  • Koichiro Haruwaka, Ako Ikegami, Yoshihisa Tachibana, Nobuhiko Ohno, Hiroyuki Konishi, Akari Hashimoto, Mami Matsumoto, Daisuke Kato, Riho Ono, Hiroshi Kiyama, Andrew J Moorhouse, Junichi Nabekura, Hiroaki Wake
    Nature communications 10(1) 5816-5816 2019年12月20日  査読有り
    Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood-brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions.
  • Mami Matsumoto, Masato Sawada, Diego García-González, Vicente Herranz-Pérez, Takashi Ogino, Huy Bang Nguyen, Truc Quynh Thai, Keishi Narita, Natsuko Kumamoto, Shinya Ugawa, Yumiko Saito, Sen Takeda, Naoko Kaneko, Konstantin Khodosevich, Hannah Monyer, José Manuel García-Verdugo, Nobuhiko Ohno, Kazunobu Sawamoto
    The Journal of neuroscience : the official journal of the Society for Neuroscience 39(50) 9967-9988 2019年12月11日  査読有り
    New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.
  • T. Sato, N. Tsukida, M. Higo, H. Magara, Z. Akase, D. Shindo, N. Ohno
    Materials Transactions 60(10) 2114-2119 2019年10月  査読有り
  • Nagashima S, Takeda K, Ohno N, Ishido S, Aoki M, Saitoh Y, Takada T, Tokuyama T, Sugiura A, Fukuda T, Matsushita N, Inatome R, Yanagi S
    Life science alliance 2(4) 2019年8月  査読有り
  • 大野 伸彦, 志茂 聡, 齊藤 百合花, 藤原 研
    組織細胞化学 2019 63-74 2019年7月  
  • Takashi Takaki, Nobuhiko Ohno, Sei Saitoh, Masaaki Nagai, Kensuke Joh
    Clinical and experimental nephrology 23(6) 773-781 2019年6月  査読有り
    BACKGROUND: The interaction among the glomerular components plays an important role in the development of glomerular lesions; thus, investigation of the ultrastructural three-dimensional (3D) configuration of the human glomerular cells and extracellular matrix (ECM) is important for understanding the pathogenesis of glomerulosclerosis, especially glomerulonephritis. METHODS: We applied a new technique of serial block-face scanning electron microscopy (SBF-SEM), which helps to acquire serial electron microscopic images to reconstruct a 3D ultrastructure, to a human kidney biopsy specimen obtained from a 25-year-old woman with lupus nephritis. RESULTS: SBF-SEM demonstrated that the cytoplasmic processes of the podocyte penetrated into the lamina densa of the glomerular basement membrane, and was in direct contact with the cytoplasm of mesangial cells at the site of mesangial interposition. CONCLUSION: Although this is a single-case observational study, SBF-SEM revealed a unique 3D configuration, suggesting a novel mechanism of direct intercellular cross-communication between podocytes and mesangial cells, aside from the presumed paracrine communication.
  • Sui Y, Nguyen HB, Thai TQ, Ikenaka K, Ohno N
    Advances in experimental medicine and biology 1190 145-163 2019年  査読有り
  • Terada N, Saitoh Y, Kamijo A, Yamauchi J, Ohno N, Sakamoto T
    Advances in experimental medicine and biology 1190 181-198 2019年  査読有り
  • 藤原 研, 東 森生, 堀口 幸太郎, 塚田 岳大, 大野 伸彦, 屋代 隆
    日本内分泌学会雑誌 94(4) 1327-1327 2018年12月  
  • Kaneko N, Herranz-Pérez V, Otsuka T, Sano H, Ohno N, Omata T, Nguyen HB, Thai TQ, Nambu A, Kawaguchi Y, García-Verdugo JM, Sawamoto K
    Science advances 4(12) eaav0618 2018年12月  査読有り
  • Akiko Takeda, Youichi Shinozaki, Kenji Kashiwagi, Nobuhiko Ohno, Kei Eto, Hiroaki Wake, Junichi Nabekura, Schuichi Koizumi
    Glia 66(11) 2366-2384 2018年11月  査読有り
    Excitotoxicity is well known in the neuronal death in the brain and is also linked to neuronal damages in the retina. Recent accumulating evidence show that microglia greatly affect excitotoxicity in the brain, but their roles in retina have received only limited attention. Here, we report that retinal excitotoxicity is mediated by microglia. To this end, we employed three discrete methods, that is, pharmacological inhibition of microglia by minocycline, pharmacological ablation by an antagonist for colony stimulating factor 1 receptor (PLX5622), and genetic ablation of microglia using Iba1-tTA::DTAtetO/tetO mice. Intravitreal injection of NMDA increased the number of apoptotic retinal ganglion cells (RGCs) followed by reduction in the number of RGCs. Although microglia did not respond to NMDA directly, they became reactive earlier than RGC damages. Inhibition or ablation of microglia protected RGCs against NMDA. We found up-regulation of proinflammatory cytokine genes including Il1b, Il6 and Tnfa, among which Tnfa was selectively blocked by minocycline. PLX5622 also suppressed Tnfa expression. Tumor necrosis factor α (TNFα) signals were restricted in microglia at very early followed by spreading into other cell types. TNFα up-regulation in microglia and other cells were significantly attenuated by minocycline and PLX5622, suggesting a central role of microglia for TNFα induction. Both inhibition of TNFα and knockdown of TNF receptor type 1 by siRNA protected RGCs against NMDA. Taken together, our data demonstrate that a phenotypic change of microglia into a neurotoxic one is a critical event for the NMDA-induced degeneration of RGCs, suggesting an importance of non-cell-autonomous mechanism in the retinal neuronal excitotoxicity.
  • Thai TQ, Nguyen HB, Sui Y, Ikenaka K, Oda T, Ohno N
    Medical molecular morphology 52(3) 135-146 2018年11月  査読有り
  • Azuma M, Tsukada T, Inagaki T, Casmad F, Jindatip D, Tofrizal A, Maliza R, Batchuluun K, Syaidah R, Ohno N, Fujiwara K, Kikuchi M, Yashiro T
    Acta histochemica et cytochemica 51(5) 145-152 2018年10月31日  査読有り
  • Ohno N, Ikenaka K
    Neuroscience research 139 48-57 2018年9月  査読有り
  • 永井 将哲, 齊藤 成, 高木 孝士, 大野 伸彦, 城 謙輔
    日本腎臓学会誌 60(6) 887-887 2018年8月  
  • Huy Bang Nguyen, Yang Sui, Truc Quynh Thai, Kazuhiro Ikenaka, Toshiyuki Oda, Nobuhiko Ohno
    Medical Molecular Morphology 51(4) 1-9 2018年5月23日  査読有り
    Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.
  • 高木 孝士, 大野 伸彦, 齊藤 成, 永井 将哲, 城 健輔
    日本腎臓学会誌 60(3) 352-352 2018年4月  
  • Masato Sawada, Nobuhiko Ohno, Mitsuyasu Kawaguchi, Shih-Hui Huang, Takao Hikita, Youmei Sakurai, Huy Bang Nguyen, Truc Quynh Thai, Yuri Ishido, Yutaka Yoshida, Hidehiko Nakagawa, Akiyoshi Uemura, Kazunobu Sawamoto
    The EMBO journal 37(4) 2018年2月15日  査読有り
    Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.
  • Nguyen HB, Thai TQ, Sui Y, Azuma M, Fujiwara K, Ohno N
    Frontiers in neural circuits 12 108 2018年  査読有り
  • Sei Saitoh, Nobuhiko Ohno, Yurika Saitoh, Nobuo Terada, Satoshi Shimo, Kaoru Aida, Hideki Fujii, Tetsuro Kobayashi, Shinichi Ohno
    Acta Histochemica et Cytochemica 51(1) 9-20 2018年  査読有り
    Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets.
  • Zentaro Akase, Mitsuaki Higo, Hideyuki Magara, Takafumi Sato, Daisuke Shindo, Kodai Niitsu, Keiko Shimada, Nobuhiko Ohno
    Microscopy 66(Supplement 1) i19 2017年12月1日  
    1722
  • Yurika Saitoh, Nobuhiko Ohno, Junji Yamauchi, Takeharu Sakamoto, Nobuo Terada
    HISTOCHEMISTRY AND CELL BIOLOGY 148(6) 597-606 2017年12月  査読有り
    We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G(-/-) mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G(-/-) mice was slower than that in wild-type mice. Using electron microscopy, 4.1G(-/-) mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G(-/-) sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.
  • Yosuke M. Morizawa, Yuri Hirayama, Nobuhiko Ohno, Shinsuke Shibata, Eiji Shigetomi, Yang Sui, Junichi Nabekura, Koichi Sato, Fumikazu Okajima, Hirohide Takebayashi, Hideyuki Okano, Schuichi Koizumi
    NATURE COMMUNICATIONS 8(1) 28 2017年11月  査読有り
  • Yosuke M. Morizawa, Yuri Hirayama, Nobuhiko Ohno, Shinsuke Shibata, Eiji Shigetomi, Yang Sui, Junichi Nabekura, Koichi Sato, Fumikazu Okajima, Hirohide Takebayashi, Hideyuki Okano, Schuichi Koizumi
    NATURE COMMUNICATIONS 8(1) 1598 2017年11月  査読有り
  • Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T, Koizumi S
    JCI insight 2(19) 2017年10月  査読有り

MISC

 104

担当経験のある科目(授業)

 3

共同研究・競争的資金等の研究課題

 14