基本情報
- 所属
- 自治医科大学 医学部解剖学講座組織学部門 教授生理学研究所 超微形態研究部門 客員教授
- 学位
- 医学博士
- J-GLOBAL ID
- 201301039074350199
- researchmap会員ID
- B000229500
- 外部リンク
平成7年 3月 筑波大学付属駒場高等学校 卒
平成13年 3月 東京大学医学部医学科 卒
平成13年 6月 東京大学医学部付属病院 内科初期研修医
平成14年 6月 公立昭和病院 内科初期研修医
平成18年 9月 山梨大学大学院 医学工学総合教育部 博士課程修了 医学博士
平成18年 10月 山梨大学大学院 助手 (解剖学講座第一教室)
平成19年 4月 山梨大学大学院 助教 (解剖学講座分子組織学教室)
平成19年 10月 山梨大学大学院 講師 (解剖学講座分子組織学教室)
平成20年 4月 米国クリーブランドクリニック 博士研究員
(平成21年 7月 全米多発性硬化症協会 ポストドクトラルフェローシップ)
平成24年 8月 山梨大学大学院 准教授 (解剖学講座分子組織学教室)
平成25年 4月 自然科学研究機構 生理学研究所 客員准教授
平成28年 4月 生理学研究所 特任准教授 (分子神経生理部門)
平成29年 5月 自治医科大学 准教授 (解剖学講座組織学部門)
平成29年 5月 生理学研究所 兼任准教授 (分子神経生理部門)
平成30年 4月 自治医科大学 教授 (解剖学講座組織学部門)
平成30年 4月 生理学研究所 教授(兼任) (分子細胞生理研究領域)
平成31年 4月 生理学研究所 客員教授 (超微形態研究部門)
平成13年 3月 東京大学医学部医学科 卒
平成13年 6月 東京大学医学部付属病院 内科初期研修医
平成14年 6月 公立昭和病院 内科初期研修医
平成18年 9月 山梨大学大学院 医学工学総合教育部 博士課程修了 医学博士
平成18年 10月 山梨大学大学院 助手 (解剖学講座第一教室)
平成19年 4月 山梨大学大学院 助教 (解剖学講座分子組織学教室)
平成19年 10月 山梨大学大学院 講師 (解剖学講座分子組織学教室)
平成20年 4月 米国クリーブランドクリニック 博士研究員
(平成21年 7月 全米多発性硬化症協会 ポストドクトラルフェローシップ)
平成24年 8月 山梨大学大学院 准教授 (解剖学講座分子組織学教室)
平成25年 4月 自然科学研究機構 生理学研究所 客員准教授
平成28年 4月 生理学研究所 特任准教授 (分子神経生理部門)
平成29年 5月 自治医科大学 准教授 (解剖学講座組織学部門)
平成29年 5月 生理学研究所 兼任准教授 (分子神経生理部門)
平成30年 4月 自治医科大学 教授 (解剖学講座組織学部門)
平成30年 4月 生理学研究所 教授(兼任) (分子細胞生理研究領域)
平成31年 4月 生理学研究所 客員教授 (超微形態研究部門)
経歴
11-
2019年 - 現在
-
2018年 - 現在
-
2018年 - 2019年
-
2017年 - 2018年
-
2017年 - 2018年
学歴
2-
2003年 - 2006年
-
1995年 - 2001年
論文
247-
Microscopy (Oxford, England) 2024年10月18日Structural observations are essential for the advancement of life science. Volume electron microscopy has recently realized remarkable progress in the three-dimensional analyses of biological specimens for elucidating complex ultrastructures in several fields of life science. The advancements in volume electron microscopy technologies have led to improvements, including higher resolution, more stability, and the ability to handle larger volumes. Although human applications of volume electron microscopy remain limited, the reported applications in various organs have already provided previously unrecognized features of human tissues and also novel insights of human diseases. Simultaneously, the application of volume electron microscopy to human studies faces challenges, including ethical and clinical hurdles, costs of data storage and analysis, and efficient and automated imaging methods for larger volume. Solutions including the use of residual clinical specimens and data analysis based on artificial intelligence would address those issues and establish the role of volume electron microscopy in human structural research. Future advancements in volume electron microscopy are anticipated to lead to transformative discoveries in basic research and clinical practice, deepening our understanding of human health and diseases for better diagnostic and therapeutic strategies.
-
Molecular Therapy - Methods & Clinical Development 32(3) 101288-101288 2024年9月
-
Acta histochemica et cytochemica 57(4) 131-135 2024年8月29日Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.
-
Journal of neurochemistry 168(9) 2264-2274 2024年8月13日Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
-
Neuroscience research 2024年6月22日The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
MISC
104-
ACTA HISTOCHEMICA ET CYTOCHEMICA 37(6) 357-364 2004年The quick-freezing method often used for physical fixation also contributed enormously to the advancement of morphology, but it could not provide enough information about the dynamic morphological changes in vivo in living animal organs. Therefore, we developed the in vivo cryotechnique in 1995, which could directly cryofix organs in vivo under anesthetized conditions without stopping blood circulation or producing effects of anoxia. We have already reported new findings about the in vivo ultrastructures of living animal organs with the cryotechnique followed by freeze-substitution or replica preparation. Recently, it has also been applied to other morphological analyses in vivo, including immunohistochemistry and FISH, for obtaining dynamically functioning structures of cells and tissues at a light microscopic level. In such experimental processes, the in vivo cryotechnique has been shown to have the added benefit of direct antigen-retrieval effects since it reduces several steps of retrieval treatments which are required in common paraffin-embedded samples prepared by the conventional fixation and dehydration. In conclusion, the in vivo cryotechnique allows us to investigate the functioning real morphology of living animals, which was technically difficult to be observed before, and perform dynamic immunohistochemistry of cells and tissues in various animal organs in vivo at ultimate time-resolution.
-
日本組織細胞化学会総会プログラムおよび抄録集 (44) 45-45 2003年10月29日
-
日本組織細胞化学会総会プログラムおよび抄録集 (44) 70-70 2003年10月29日
-
日本組織細胞化学会総会プログラムおよび抄録集 (44) 75-75 2003年10月29日
共同研究・競争的資金等の研究課題
14-
日本学術振興会 科学研究費助成事業 2022年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2021年9月 - 2026年3月