基本情報
- 所属
- 自治医科大学 医学部解剖学講座解剖学部門 准教授
- J-GLOBAL ID
- 200901079331220543
- researchmap会員ID
- 1000365297
徳島大学工学部生物工学科卒業後、奈良先端科学技術大学院大学バイオサイエンス研究科博士前期課程、東北大学大学院医学系研究科医学履修博士課程修了。1) 脳の発生発達過程における領域化、ニューロン分化、および神経回路形成、2) 顔面、器官形成における上皮間葉細胞相互作用、上皮(中皮)間葉転換、および組織幹細胞の振る舞い、3) 哺乳全胚培養法とその応用、に興味をもっている。
研究キーワード
17経歴
11-
2023年8月 - 現在
-
2023年7月 - 現在
-
2022年5月 - 2023年7月
-
2020年6月 - 2022年4月
-
2019年1月 - 2020年5月
-
2012年4月 - 2018年12月
-
2012年6月 - 2013年3月
-
2007年4月 - 2012年3月
-
2003年4月 - 2007年3月
委員歴
1-
2020年1月 - 2022年12月
受賞
5-
2019年11月
-
2019年9月
-
2006年5月
-
2003年3月
-
1997年1月
論文
29-
Genes to Cells 2024年8月7日 査読有り筆頭著者責任著者Abstract Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)‐to‐mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b‐expressing cells by using novel Wnt2b‐2A‐CreERT2 knock‐in and LacZ‐reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b‐expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A‐CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b‐expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium‐derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b‐expressing PEO and epicardial cells to the postnatal heart.
-
The Journal of comparative neurology 2021年7月9日 査読有り筆頭著者責任著者The dorsolateral striatum (DLS) of rodents is functionally subdivided into somatotopic subregions that represent each body part along both the dorsoventral and anteroposterior (A-P) axes and play crucial roles in sensorimotor functions via corticostriatal pathways. However, little is known about the spatial gene expression patterns and heterogeneity of spiny projection neurons (SPNs) within somatotopic subregions. Here, we show that the cell adhesion molecule gene Cdh20, which encodes a Type II cadherin, is expressed in discrete subregions covering the inner orofacial area and part of the forelimb area in the ventral domain of the DLS (v-DLS) in rats. Cdh20-expressing cells were localized in the v-DLS at the intermediate level of the striatum along the A-P axis and could be classified as direct-pathway SPNs or indirect-pathway SPNs. Unexpectedly, comprehensive analysis revealed that Cdh20 is expressed in SPNs in the rat DLS but not in the mouse DLS or the ferret putamen (Pu). Our observations reveal that Cdh20 expression demarcates somatotopic subregions and subpopulations of SPNs specifically in the rat DLS and suggest divergent regulation of genes differentially expressed in the v-DLS and Pu among mammals.
-
Developmental dynamics : an official publication of the American Association of Anatomists 249(9) 1098-1116 2020年4月3日 査読有り筆頭著者責任著者BACKGROUND: The structure of the mouse incisor is characterized by its asymmetric accumulation of enamel matrix proteins on the labial side. The asymmetric structure originates from the patterning of the epithelial incisor placode through the interaction with dental mesenchymal cells. However, the molecular basis for the asymmetric patterning of the incisor germ is largely unknown. RESULTS: A homeobox transcription factor SIX1 was shown to be produced in the mandibular mesenchyme, and its localization patterns changed dynamically during lower incisor development. Six1-/- mice exhibited smaller lower incisor primordia than wild-type mice. Furthermore, Six1-/- mice showed enamel matrix production on both the lingual and labial sides and disturbed odontoblast maturation. In the earlier stages of development, the formation of signaling centers, the initiation knot and the enamel knot, which are essential for the morphogenesis of tooth germs, were impaired in Six1-/- embryos. Notably, Wnt signaling activity, which shows an anterior-posterior gradient, and the expression patterns of genes involved in incisor formation were altered in the mesenchyme in Six1-/- embryos. CONCLUSION: Our results indicate that Six1 is required for signaling center formation in lower incisor germs and the labial-lingual asymmetry of the lower incisors by regulating the anterior-posterior patterning of the mandibular mesenchyme. This article is protected by copyright. All rights reserved.
-
Mice doubly deficient in Six4 and Six5 show ventral body wall defects reproducing human omphalocele.Disease models & mechanisms 11(10) 2018年10月25日 査読有り筆頭著者Omphalocele is a human congenital anomaly in ventral body wall closure and may be caused by impaired formation of the primary abdominal wall (PAW) and/or defects in abdominal muscle development. Here, we report that mice doubly deficient in homeobox genes Six4 and Six5 showed the same ventral body wall closure defects as those seen in human omphalocele. SIX4 and SIX5 were localized in surface ectodermal cells and somatic mesoderm-derived mesenchymal and coelomic epithelial cells (CECs) in the PAW. Six4-/-;Six5-/- fetuses exhibited a large omphalocele with protrusion of both the liver and intestine, or a small omphalocele with protrusion of the intestine, with complete penetrance. The umbilical ring of Six4-/-;Six5-/- embryos was shifted anteriorly and its lateral size was larger than that of normal embryos at the E11.5 stage, before the onset of myoblast migration into the PAW. The proliferation rates of surface ectodermal cells in the left and right PAW and somatic mesoderm-derived cells in the right PAW were lower in Six4-/-;Six5-/- embryos than those of wild-type embryos at E10.5. The transition from CECs of the PAW to rounded mesothelial progenitor cells was impaired and the inner coelomic surface of the PAW was relatively smooth in Six4-/-;Six5-/- embryos at E11.25. Furthermore, Six4 overexpression in CECs of the PAW promoted ingression of CECs. Taken together, our results suggest that Six4 and Six5 are required for growth and morphological change of the PAW, and the impairment of these processes is linked to the abnormal positioning and expansion of the umbilical ring, which results in omphalocele.
-
Development (Cambridge, England) 145(8) 2018年4月16日 査読有りThe evolution of unique organ structures is associated with changes in conserved developmental programs. However, characterizing the functional conservation and variation of homologous transcription factors (TFs) that dictate species-specific cellular dynamics has remained elusive. Here, we dissect shared and divergent functions of Pax6 during amniote brain development. Comparative functional analyses revealed that the neurogenic function of Pax6 is highly conserved in the developing mouse and chick pallium, whereas stage-specific binary functions of Pax6 in neurogenesis are unique to mouse neuronal progenitors, consistent with Pax6-dependent temporal regulation of Notch signaling. Furthermore, we identified that Pax6-dependent enhancer activity of Dbx1 is extensively conserved between mammals and chick, although Dbx1 expression in the developing pallium is highly divergent in these species. Our results suggest that spatiotemporal changes in Pax6-dependent regulatory programs contributed to species-specific neurogenic patterns in mammalian and avian lineages, which underlie the morphological divergence of the amniote pallial architectures.
MISC
19-
Neuromethods 102 141-157 2015年 査読有り招待有りElectroporation has been widely used in various animals to introduce transgenes into their tissues and organs. We have previously developed a gene transfer method into the developing brain of rat and mouse embryos by applying electroporation to a mammalian whole embryo culture technique. We can directly transfer exogenous genes and small nucleic acids, e.g., double strand RNAs, siRNAs, and Morpholino oligos, into desirable regions of the developing brain of cultured embryos at different stages by easily adjusting the direction of electrodes. This method enables us to provide simple and convenient gain-of- function and loss-of-function studies to explore novel understanding of molecular and cellular mechanisms underlying mammalian brain development.
担当経験のある科目(授業)
14-
生物学実習(医学部1年次) (自治医科大学)
-
人体構造学 (中枢神経系の発生と機能、脳の構築と神経幹細胞)(修士課程) (自治医科大学大学院医学研究科)
-
人間生物学系2 (脳の発生とヒト脳の進化)(博士課程) (自治医科大学大学院医学研究科)
-
発生システム(医学部1年次) (自治医科大学)
共同研究・競争的資金等の研究課題
20-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2019年4月 - 2022年3月
-
母子健康協会 小児医学研究助成 2019年12月 - 2020年11月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2019年4月 - 2020年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2016年4月 - 2019年3月