基本情報
- 所属
- 自治医科大学 医学部 感染・免疫学講座 細菌学部門 准教授
- 学位
- 博士(工学)(東京大学)
- 研究者番号
- 40323810
- J-GLOBAL ID
- 200901022892347397
- researchmap会員ID
- 1000321728
研究キーワード
3研究分野
1経歴
4-
2022年1月 - 現在
-
2007年4月 - 2021年12月
-
2000年4月 - 2007年3月
-
1997年4月 - 2000年3月
学歴
2-
- 2000年
-
- 1995年
論文
55-
Microbiology Spectrum 2024年5月2日 査読有りABSTRACT Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC , the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary. IMPORTANCE The combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.
-
Scientific reports 12(1) 15656-15656 2022年9月19日There is an urgent need to develop phage therapies for multidrug-resistant bacterial infections. However, although bacteria have been shown to be susceptible to phage therapy, phage therapy is not sufficient in some cases. PhiMR003 is a methicillin-resistant Staphylococcus aureus phage previously isolated from sewage influent, and it has demonstrated high lytic activity and a broad host range to MRSA clinical isolates in vitro. To investigate the potential of phiMR003 for the treatment of MRSA infection, the effects of phiMR003 on immune responses in vivo were analysed using phiMR003-susceptible MRSA strains in a mouse wound infection model. Additionally, we assessed whether phiMR003 could affect the immune response to infection with a nonsusceptible MRSA strain. Interestingly, wounds infected with both susceptible and nonsusceptible MRSA strains treated with phiMR003 demonstrated decreased bacterial load, reduced inflammation and accelerated wound closure. Moreover, the infiltration of inflammatory cells in infected tissue was altered by phiMR003. While the effects of phiMR003 on inflammation and bacterial load disappeared with heat inactivation of phiMR003. Transcripts of proinflammatory cytokines induced by lipopolysaccharide were reduced in mouse peritoneal macrophages. These results show that the immune modulation occurring as a response to the phage itself improves the clinical outcomes of phage therapy.
-
Japanese Journal of Infectious Diseases 2022年7月29日
-
Water and Life in Tonle Sap Lake 275-283 2022年6月25日
MISC
72-
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 84(1) 135-142 2009年8月The susceptibility of mastitis-causing Escherichia coli and Staphylococcus aureus to two commonly used antibiotics, tetracycline and penicillin G, was tested in raw milk and in Muller-Hinton (MH) broth by introducing a pH indicator, bromocresol purple, which was shown to be a simple, sensitive, and rapid method. The minimum inhibitory concentration (MIC) of penicillin G in milk was the same as those in MH broth, whereas the MIC of tetracycline in milk was 4 to 32 times that in MH. An irreversible binding between tetracycline and large molecules of milk, which might be due to a hydrophobic interaction, was demonstrated by a dialysis test, suggesting the observed impairing effect was due to the action of milk on the tetracycline being tested. Further investigation revealed that much of the reduction of tetracycline's activity in milk was attributable to the milk protein casein, while other heat-sensitive components in milk also play some roles.
講演・口頭発表等
2-
4th ASM Conference on Biofilms 2007年
-
4th ASM Conference on Biofilms 2007年
所属学協会
7共同研究・競争的資金等の研究課題
18-
日本学術振興会 科学研究費助成事業 2024年4月 - 2029年3月
-
日本学術振興会 科学研究費助成事業 2021年7月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2014年4月 - 2017年3月
-
日本学術振興会 科学研究費助成事業 2012年4月 - 2017年3月