研究者業績

桂田 健一

カツラダ ケンイチ  (Kenichi Katsurada)

基本情報

所属
自治医科大学 医学部 薬理学講座臨床薬理学部門 講師
学位
医学博士(2015年3月 自治医科大学)

研究者番号
70598630
ORCID ID
 https://orcid.org/0000-0002-0567-1458
J-GLOBAL ID
202001005844700723
researchmap会員ID
R000009616

学歴

 2

論文

 36
  • Yukako Ogoyama, Makiko Abe, Keisuke Okamura, Kazuhiro Tada, Kenichi Katsurada, Shigeru Shibata, Hisashi Kai, Hiromi Rakugi, Koichi Node, Hiroyoshi Yokoi, Kazuomi Kario, Hisatomi Arima
    Hypertension research : official journal of the Japanese Society of Hypertension 2024年6月3日  
    The efficacy of renal denervation (RDN) has been controversial, but recent randomized sham-controlled trials demonstrated significant blood pressure reductions after RDN in patients with hypertension. We conducted a systematic review and updated meta-analysis to evaluate the effects of RDN on ambulatory and office blood pressures in patients with hypertension. Databases were searched up to 15 November 2023 to identify randomized, sham-controlled trials of RDN. The primary endpoint was change in 24 h ambulatory systolic blood pressure (SBP) with RDN versus sham control. The secondary endpoints were changes in 24 h ambulatory diastolic blood pressure, daytime and nighttime blood pressure (BP), office BP, and home BP. A sub-analysis determined outcomes by medication, procedure, and device. From twelve trials, 2222 patients with hypertension were randomized to undergo RDN (n = 1295) or a sham procedure (n = 927). At 2-6 months after treatment, RDN significantly reduced 24 h ambulatory SBP by 2.81 mmHg (95% confidence interval: -4.09, -1.53; p < 0.001) compared with the sham procedure. RDN also reduced daytime SBP by 3.17 mmHg (- 4.75, - 1.58; p < 0.001), nighttime SBP by 3.41 mmHg (- 4.69, - 2.13; p < 0.001), office SBP by 4.95 mmHg (- 6.37, - 3.54; p < 0.001), and home SBP by 4.64 mmHg (- 7.44, - 1.84; p = 0.001) versus the sham control group. There were no significant differences in the magnitude of BP reduction between first- and second-generation trials, between devices, or between with or without medication. These data from randomized sham-controlled trials showed that RDN significantly reduced all blood pressure metrics in medicated or unmedicated patients with hypertension, including resistant/uncontrolled hypertension.
  • Kenichi Katsurada, Kaushik P Patel
    Hypertension research : official journal of the Japanese Society of Hypertension 2024年4月17日  
  • Kenichi Katsurada
    Hypertension research : official journal of the Japanese Society of Hypertension 2024年2月13日  
  • Masaki Mogi, Atsushi Tanaka, Koichi Node, Naoko Tomitani, Satoshi Hoshide, Keisuke Narita, Yoichi Nozato, Kenichi Katsurada, Tatsuya Maruhashi, Yukihito Higashi, Chisa Matsumoto, Kanako Bokuda, Yuichi Yoshida, Hirotaka Shibata, Ayumi Toba, Takahiro Masuda, Daisuke Nagata, Michiaki Nagai, Keisuke Shinohara, Kento Kitada, Masanari Kuwabara, Takahide Kodama, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 2023年9月15日  
    Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.
  • Kenichi Katsurada, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 46(6) 1462-1470 2023年6月  
    Inappropriate sympathetic activation is closely associated with the development and progression of hypertension. Renal denervation (RDN) is a neuromodulation therapy performed using an intraarterial catheter in patients with hypertension. Recent randomized sham-operated controlled trials have shown that RDN has significant antihypertensive effects that last for at least 3 years. Based on this evidence, RDN is nearly ready for general clinical application. On the other hand, there are remaining issues to be addressed, including elucidation of the precise antihypertensive mechanisms of RDN, the appropriate endpoint of RDN during the procedure, and the association between reinnervation after RDN and the long-term effects of RDN. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after RDN. A comprehensive understanding of the anatomical and functional aspects of the renal nerves and the antihypertensive mechanisms of RDN, including its long-term effects, will enhance our ability to incorporate RDN into strategies to treat hypertension in clinical practice. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after renal denervation. Whether the ablation site is sympathetic dominant or parasympathetic dominant, and afferent dominant or efferent dominant, would in turn determine the final output of renal denervation. BP: blood pressure.
  • Shyam S Nandi, Kenichi Katsurada, Michael J Moulton, Hong Zheng, Kaushik P Patel
    Frontiers in physiology 14 1277065-1277065 2023年  
    Heart failure with preserved ejection fraction (HFpEF) is a heterogenous clinical syndrome characterized by diastolic dysfunction, concentric cardiac left ventricular (LV) hypertrophy, and myocardial fibrosis with preserved systolic function. However, the underlying mechanisms of HFpEF are not clear. We hypothesize that an enhanced central sympathetic drive is sufficient to induce LV dysfunction and HFpEF in rats. Male Sprague-Dawley rats were subjected to central infusion of either saline controls (saline) or angiotensin II (Ang II, 20 ng/min, i.c.v) via osmotic mini-pumps for 14 days to elicit enhanced sympathetic drive. Echocardiography and invasive cardiac catheterization were used to measure systolic and diastolic functions. Mean arterial pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), and ± dP/dt changes in responses to isoproterenol (0.5 μg/kg, iv) were measured. Central infusion of Ang II resulted in increased sympatho-excitation with a consequent increase in blood pressure. Although the ejection fraction was comparable between the groups, there was a decrease in the E/A ratio (saline: 1.5 ± 0.2 vs Ang II: 1.2 ± 0.1). LVEDP was significantly increased in the Ang II-treated group (saline: 1.8 ± 0.2 vs Ang II: 4.6 ± 0.5). The increase in +dP/dt to isoproterenol was not significantly different between the groups, but the response in -dP/dt was significantly lower in Ang II-infused rats (saline: 11,765 ± 708 mmHg/s vs Ang II: 8,581 ± 661). Ang II-infused rats demonstrated an increased heart to body weight ratio, cardiomyocyte hypertrophy, and fibrosis. There were elevated levels of atrial natriuretic peptide and interleukin-6 in the Ang II-infused group. In conclusion, central infusion of Ang II in rats induces sympatho-excitation with concurrent diastolic dysfunction, pathological cardiac concentric hypertrophy, and cardiac fibrosis. This novel model of centrally mediated sympatho-excitation demonstrates characteristic diastolic dysfunction in rats, representing a potentially useful preclinical murine model of HFpEF to investigate various altered underlying mechanisms during HFpEF in future studies.
  • Satoshi Hoshide, Koichi Yamamoto, Kenichi Katsurada, Yuichiro Yano, Akira Nishiyama, Ji-Guang Wang, S N Narasingan, Narsingh Verma, Erwinanto Erwinanto, Yuda Turana, Sang Hyun Ihm, Sungha Park, Nik Sherina Hanafi, Yook-Chin Chia, Tsolmon Unurjargal, Saulat Siddique, Deborah Ignacia D Ona, Narayanaswamy Venketasubramanian, Boon Wee Teo, Godwin Constantine, Hsien-Li Kao, Chi-Sheng Hung, Apichard Sukonthasarn, Sirisawat Kunanon, Huynh Van Minh, Kazuomi Kario, Koichi Node, Hiroshi Itoh, Hiromi Rakugi
    Hypertension research : official journal of the Japanese Society of Hypertension 46(1) 3-8 2023年1月  
  • Shota Ikeda, Keisuke Shinohara, Soichiro Kashihara, Sho Matsumoto, Daisuke Yoshida, Ryosuke Nakashima, Yoshiyasu Ono, Masaaki Nishihara, Kenichi Katsurada, Hiroyuki Tsutsui
    Hypertension research : official journal of the Japanese Society of Hypertension 46(1) 268-279 2023年1月  
    The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.
  • Kenichi Katsurada, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 2022年11月18日  
  • Masaki Mogi, Tatsuya Maruhashi, Yukihito Higashi, Takahiro Masuda, Daisuke Nagata, Michiaki Nagai, Kanako Bokuda, Atsuhiro Ichihara, Yoichi Nozato, Ayumi Toba, Keisuke Narita, Satoshi Hoshide, Atsushi Tanaka, Koichi Node, Yuichi Yoshida, Hirotaka Shibata, Kenichi Katsurada, Masanari Kuwabara, Takahide Kodama, Keisuke Shinohara, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 45(8) 1276-1297 2022年8月  
    In 2021, 217 excellent manuscripts were published in Hypertension Research. Editorial teams greatly appreciate the authors' contribution to hypertension research progress. Here, our editorial members have summarized twelve topics from published work and discussed current topics in depth. We hope you enjoy our special feature, "Update on Hypertension Research in 2021".
  • Hong Zheng, Kenichi Katsurada, Shyam Nandi, Yifan Li, Kaushik P Patel
    Current hypertension reports 24(7) 235-246 2022年7月  
    PURPOSE OF REVIEW: This review focuses on studies implicating forebrain neural pathways and neuromodulator systems, particularly, the nitric oxide system within the paraventricular nucleus of the hypothalamus in regulating neurohumoral drive, autonomic pathways, and fluid balance. RECENT FINDINGS: Accumulating evidence from animals with experimental models of hypertension and heart failure as well as humans with hypertension suggests that alterations in central neural pathways, particularly, within the PVN neuromodulated by neuronal nitric oxide, are involved in regulating sympathetic outflow particularly to the kidney resulting in alterations in fluid balance commonly observed in hypertension and heart failure states. The characteristics of the hypertensive and heart failure states include alterations in neuronal nitric oxide within the PVN to cause an increase in renal sympathetic nerve activity to result in sodium and fluid retention in these diseases. A comprehensive understanding of these mechanisms will enhance our ability to treat hypertensive and heart failure conditions and their cardiovascular complications more efficiently.
  • Kaushik P Patel, Kenichi Katsurada, Hong Zheng
    Circulation research 130(10) 1601-1617 2022年5月13日  
    The maintenance of cardiovascular homeostasis is highly dependent on tightly controlled interactions between the heart and the kidneys. Therefore, it is not surprising that a dysfunction in one organ affects the other. This interlinking relationship is aptly demonstrated in the cardiorenal syndrome. The characteristics of the cardiorenal syndrome state include alterations in neurohumoral drive, autonomic reflexes, and fluid balance. The evidence suggests that several factors contribute to these alterations. These may include peripheral and central nervous system abnormalities. However, accumulating evidence from animals with experimental models of congestive heart failure and renal dysfunction as well as humans with the cardiorenal syndrome suggests that alterations in neural pathways, from and to the kidneys and the heart, including the central nervous system are involved in regulating sympathetic outflow and may be critically important in the alterations in neurohumoral drive, autonomic reflexes, and fluid balance commonly observed in the cardiorenal syndrome. This review focuses on studies implicating neural pathways, particularly the afferent and efferent signals from the heart and the kidneys integrating at the level of the paraventricular nucleus in the hypothalamus to alter neurohumoral drive, autonomic pathways, and fluid balance. Further, it explores the potential mechanisms of action for the known beneficial use of various medications or potential novel therapeutic manipulations for the treatment of the cardiorenal syndrome. A comprehensive understanding of these mechanisms will enhance our ability to treat cardiorenal conditions and their cardiovascular complications more efficaciously and thoroughly.
  • Kenichi Katsurada, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 45(2) 372-375 2022年2月  
  • Kenichi Katsurada, Keisuke Shinohara, Jiro Aoki, Shinsuke Nanto, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 45(2) 198-209 2022年2月  
    Renal nerves have critical roles in regulating blood pressure and fluid volume, and their dysfunction is closely related with cardiovascular diseases. Renal nerves are composed of sympathetic efferent and sensory afferent nerves. Activation of the efferent renal sympathetic nerves induces renin secretion, sodium absorption, and increased renal vascular resistance, which lead to increased blood pressure and fluid retention. Afferent renal sensory nerves, which are densely innervated in the renal pelvic wall, project to the hypothalamic paraventricular nucleus in the brain to modulate sympathetic outflow to the periphery, including the heart, kidneys, and arterioles. The effects of renal denervation on the cardiovascular system are mediated by both efferent denervation and afferent denervation. The first half of this review focuses on basic research using animal models of hypertension and heart failure, and addresses the therapeutic effects of renal denervation for hypertension and heart failure, including underlying mechanisms. The second half of this review focuses on clinical research related to catheter-based renal denervation in patients with hypertension. Randomized sham-controlled trials using second-generation devices, endovascular radiofrequency-based devices and ultrasound-based devices are reviewed and their results are assessed. This review summarizes the basic and clinical evidence of renal denervation to date, and discusses future prospects and potential developments in renal denervation therapy for cardiovascular diseases.
  • Kenichi Katsurada, Shyam S Nandi, Neeru M Sharma, Kaushik P Patel
    Circulation. Heart failure 14(12) e008365 2021年12月  査読有り
    BACKGROUND: Recent clinical studies demonstrate that SGLT2 (sodium-glucose cotransporter 2) inhibitors ameliorate heart failure (HF). The present study was conducted to assess the expression and function of renal SGLT2 and the influence of enhanced renal sympathetic tone in HF. METHODS: Four weeks after coronary artery ligation surgery to induce HF, surgical bilateral renal denervation (RDN) was performed in rats. Four groups of rats (Sham-operated control [Sham], Sham+RDN, HF and HF+RDN; n=6/group) were used. Immunohistochemistry and Western blot analysis were performed to evaluate the renal SGLT2 expression. One week after RDN (5 weeks after induction of HF), intravenous injection of SGLT2 inhibitor dapagliflozin were performed to assess renal excretory responses. In vitro, human embryonic kidney cells were used to investigate the fractionation of SGLT2 after norepinephrine treatment. RESULTS: In rats with HF, (1) SGLT2 expression in the proximal tubule of the kidney was increased; (2) the response of increases in urine flow, sodium excretion, and glucose excretion to dapagliflozin were greater; and (3) RDN attenuated renal SGLT2 expression and normalized renal functional responses to dapagliflozin. In vitro, norepinephrine promoted translocation of SGLT2 to the cell membrane. CONCLUSIONS: These results indicate that the enhanced tonic renal sympathetic nerve activation in HF increases the expression and functional activity of renal SGLT2. Potentiated trafficking of SGLT2 to cell surface in renal proximal tubules mediated by norepinephrine may contribute to this functional activation of SGLT2 in HF. These findings provide critical insight into the underlying mechanisms for the beneficial effects of SGLT2 inhibitors on HF reported in the clinical studies.
  • Kenichi Katsurada, Yukako Ogoyama, Yasushi Imai, Kaushik P Patel, Kazuomi Kario
    Hypertension research : official journal of the Japanese Society of Hypertension 44(11) 1385-1394 2021年11月  査読有り
    Excessive activation of the sympathetic nervous system is one of the pathophysiological hallmarks of hypertension and heart failure. Within the central nervous system, the paraventricular nucleus (PVN) of the hypothalamus and the rostral ventrolateral medulla in the brain stem play critical roles in the regulation of sympathetic outflow to peripheral organs. Information from the peripheral circulation, including serum concentrations of sodium and angiotensin II, is conveyed to the PVN via adjacent structures with a weak blood-brain barrier. In addition, signals from baroreceptors, chemoreceptors and cardiopulmonary receptors as well as afferent input via the renal nerves are all integrated at the level of the PVN. The brain renin-angiotensin system and the balance between nitric oxide and reactive oxygen species in these brain areas also determine the final sympathetic outflow. Additionally, brain inflammatory responses have been shown to modulate these processes. Renal denervation interrupts both the afferent inputs from the kidney to the PVN and the efferent outputs from the PVN to the kidney, resulting in the suppression of sympathetic outflow and eliciting beneficial effects on both hypertension and heart failure.
  • Safwan K Elkhatib, Cassandra M Moshfegh, Gabrielle F Watson, Aaron D Schwab, Kenichi Katsurada, Kaushik P Patel, Adam J Case
    Biological psychiatry global open science 1(3) 190-200 2021年9月  
    BACKGROUND: Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. METHODS: Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. RESULTS: Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. CONCLUSIONS: Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.
  • Kenichi Katsurada, Kazuomi Kario
    Journal of clinical hypertension (Greenwich, Conn.) 23(9) 1715-1717 2021年9月  査読有り
  • Shyam S Nandi, Kenichi Katsurada, Sushil K Mahata, Kaushik P Patel
    Frontiers in physiology 12 718982-718982 2021年  
    Aims: Hypertension increases the risk of heart disease. Hallmark features of hypertensive heart disease is sympathoexcitation and cardiac mitochondrial abnormality. However, the molecular mechanisms for specifically neurally mediated mitochondrial abnormality and subsequent cardiac dysfunction are unclear. We hypothesized that enhanced sympatho-excitation to the heart elicits cardiac miR-18a-5p/HIF-1α and mitochondrial unfolded protein response (UPRmt) signaling that lead to mitochondrial abnormalities and consequent pathological cardiac remodeling. Methods and Results: Using a model of neurogenic hypertension (NG-HTN), induced by intracerebroventricular (ICV) infusion of Ang II (NG-HTN; 20 ng/min, 14 days, 0.5 μl/h, or Saline; Control, 0.9%) through osmotic mini-pumps in Sprague-Dawley rats (250-300 g), we attempted to identify a link between sympathoexcitation (norepinephrine; NE), miRNA and HIF-1α signaling and UPRmt to produce mitochondrial abnormalities resulting in cardiomyopathy. Cardiac remodeling, mitochondrial abnormality, and miRNA/HIF-1α signaling were assessed using histology, immunocytochemistry, electron microscopy, Western blotting or RT-qPCR. NG-HTN demonstrated increased sympatho-excitation with concomitant reduction in UPRmt, miRNA-18a-5p and increased level of HIF-1α in the heart. Our in silico analysis indicated that miR-18a-5p targets HIF-1α. Direct effects of NE on miRNA/HIF-1α signaling and mitochondrial abnormality examined using H9c2 rat cardiomyocytes showed NE reduces miR-18a-5p but increases HIF-1α. Electron microscopy revealed cardiac mitochondrial abnormality in NG-HTN, linked with hypertrophic cardiomyopathy and fibrosis. Mitochondrial unfolded protein response was decreased in NG-HTN indicating mitochondrial proteinopathy and proteotoxic stress, associated with increased mito-ROS and decreased mitochondrial membrane potential (ΔΨm), and oxidative phosphorylation. Further, there was reduced cardiac mitochondrial biogenesis and fusion, but increased mitochondrial fission, coupled with mitochondrial impaired TIM-TOM transport and UPRmt. Direct effects of NE on H9c2 rat cardiomyocytes also showed cardiomyocyte hypertrophy, increased mitochondrial ROS generation, and UPRmt corroborating the in vivo data. Conclusion: In conclusion, enhanced sympatho-excitation suppress miR-18a-5p/HIF-1α signaling and increased mitochondrial stress proteotoxicity, decreased UPRmt leading to decreased mitochondrial dynamics/OXPHOS/ΔΨm and ROS generation. Taken together, these results suggest that ROS induced mitochondrial transition pore opening activates pro-hypertrophy/fibrosis/inflammatory factors that induce pathological cardiac hypertrophy and fibrosis commonly observed in NG-HTN.
  • Neeru M Sharma, Andréa S Haibara, Kenichi Katsurada, Shyam S Nandi, Xuefei Liu, Hong Zheng, Kaushik P Patel
    Hypertension (Dallas, Tex. : 1979) 77(1) 147-157 2021年1月  査読有り
    Central infusion of Ang II (angiotensin II) has been associated with increased sympathetic outflow resulting in neurogenic hypertension. In the present study, we appraised whether the chronic increase in central Ang II activates the paraventricular nucleus of the hypothalamus (PVN) resulting in elevated sympathetic tone and altered baro- and chemoreflexes. Further, we evaluated the contribution of HIF-1α (hypoxia-inducible factor-1α), a transcription factor involved in enhancing the expression of N-methyl-D-aspartate receptors and thus glutamatergic-mediated sympathetic tone from the PVN. Ang II infusion (20 ng/minute, intracerebroventricular, 14 days) increased mean arterial pressure (126±9 versus 84±4 mm Hg), cardiac sympathetic tone (96±7 versus 75±6 bpm), and decreased cardiac parasympathetic tone (16±2 versus 36±3 versus bpm) compared with saline-infused controls in conscious rats. The Ang II-infused group also showed an impaired baroreflex control of heart rate (-1.50±0.1 versus -2.50±0.3 bpm/mm Hg), potentiation of the chemoreflex pressor response (53±7 versus 30±7 mm Hg) and increased number of FosB-labeled cells (53±3 versus 19±4) in the PVN. Concomitant with the activation of the PVN, there was an increased expression of HIF-1α and N-Methyl-D-Aspartate-type1 receptors in the PVN. Further, Ang II-infusion showed increased renal sympathetic nerve activity (20.5±2.3% versus 6.4±1.9% of Max) and 3-fold enhanced renal sympathetic nerve activity responses to microinjection of N-methyl-D-aspartate (200 pmol) into the PVN of anesthetized rats. Further, silencing of HIF-1α in NG108 cells abrogated the expression of N-methyl-D-aspartate-N-methyl-D-aspartate-type1 induced by Ang II. Taken together, our studies suggest a novel Ang II-HIF-1α-N-methyl-D-aspartate receptor-mediated activation of preautonomic neurons in the PVN, resulting in increased sympathetic outflow and alterations in baro- and chemoreflexes.
  • Li Zheng, Andrew J Trease, Kenichi Katsurada, Gaelle Spagnol, Hanjun Li, Wen Shi, Bin Duan, Kaushik P Patel, Paul L Sorgen
    Journal of molecular and cellular cardiology 149 27-40 2020年12月  査読有り
    Identification of proteins that interact with Cx43 has been instrumental in the understanding of gap junction (GJ) regulation. An in vitro phosphorylation screen identified that Protein tyrosine kinase 2 beta (Pyk2) phosphorylated purified Cx43CT and this led us to characterize the impact of this phosphorylation on Cx43 function. Mass spectrometry identified Pyk2 phosphorylates Cx43 residues Y247, Y265, Y267, and Y313. Western blot and immunofluorescence staining using HeLaCx43 cells, HEK 293 T cells, and neonatal rat ventricular myocytes (NRVMs) revealed Pyk2 can be activated by Src and active Pyk2 interacts with Cx43 at the plasma membrane. Overexpression of Pyk2 increases Cx43 phosphorylation and knock-down of Pyk2 decreases Cx43 phosphorylation, without affecting the level of active Src. In HeLaCx43 cells treated with PMA to activate Pyk2, a decrease in Cx43 GJ intercellular communication (GJIC) was observed when assayed by dye transfer. Moreover, PMA activation of Pyk2 could be inhibited by the small molecule PF4618433. This partially restored GJIC, and when paired with a Src inhibitor, returned GJIC to the no PMA control-level. The ability of Pyk2 and Src inhibitors to restore Cx43 function in the presence of PMA was also observed in NRVMs. Additionally, an animal model of myocardial infarction induced heart failure showed a higher level of active Pyk2 activity and increased interaction with Cx43 in ventricular myocytes. Src inhibitors have been used to reverse Cx43 remodeling and improve heart function after myocardial infarction; however, they alone could not fully restore proper Cx43 function. Our data suggest that Pyk2 may need to be inhibited, in addition to Src, to further (if not completely) reverse Cx43 remodeling and improve intercellular communication.
  • Sarah L Schlichte, Svetlana Romanova, Kenichi Katsurada, Elizabeth A Kosmacek, Tatiana K Bronich, Kaushik P Patel, Rebecca E Oberley-Deegan, Matthew C Zimmerman
    Redox biology 36 101610-101610 2020年9月  査読有り
    Scavenging superoxide (O2•-) via overexpression of superoxide dismutase (SOD) or administration of SOD mimics improves outcomes in multiple experimental models of human disease including cardiovascular disease, neurodegeneration, and cancer. While few SOD mimics have transitioned to clinical trials, MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic, is currently in clinical trials as a radioprotector for cancer patients; thus, providing hope for the use of SOD mimics in the clinical setting. However, BuOE transiently alters cardiovascular function including a significant and precipitous decrease in blood pressure. To limit BuOE's acute hypotensive action, we developed a mesoporous silica nanoparticle and lipid bilayer nanoformulation of BuOE (nanoBuOE) that allows for slow and sustained release of the drug. Herein, we tested the hypothesis that unlike native BuOE, nanoBuOE does not induce an acute hypotensive response, as the nanoformulation prevents BuOE from scavenging O2•- while the drug is still encapsulated in the formulation. We report that intact nanoBuOE does not effectively scavenge O2•-, whereas BuOE released from the nanoformulation does retain SOD-like activity. Further, in mice, native BuOE, but not nanoBuOE, rapidly, acutely, and significantly decreases blood pressure, as measured by radiotelemetry. To begin exploring the physiological mechanism by which native BuOE acutely decreases blood pressure, we recorded renal sympathetic nerve activity (RSNA) in rats. RSNA significantly decreased immediately following intravenous injection of BuOE, but not nanoBuOE. These data indicate that nanoformulation of BuOE, a SOD mimic currently in clinical trials in cancer patients, prevents BuOE's negative side effects on blood pressure homeostasis.
  • Kenichi Katsurada, Shyam S Nandi, Hong Zheng, Xuefei Liu, Neeru M Sharma, Kaushik P Patel
    Cardiovascular diabetology 19(1) 57-57 2020年5月8日  査読有り
    BACKGROUND: Glucagon-like peptide-1 (GLP-1) induces diuresis and natriuresis. Previously we have shown that GLP-1 activates afferent renal nerve to increase efferent renal sympathetic nerve activity that negates the diuresis and natriuresis as a negative feedback mechanism in normal rats. However, renal effects of GLP-1 in heart failure (HF) has not been elucidated. The present study was designed to assess GLP-1-induced diuresis and natriuresis in rats with HF and its interactions with renal nerve activity. METHODS: HF was induced in rats by coronary artery ligation. The direct recording of afferent renal nerve activity (ARNA) with intrapelvic injection of GLP-1 and total renal sympathetic nerve activity (RSNA) with intravenous infusion of GLP-1 were performed. GLP-1 receptor expression in renal pelvis, densely innervated by afferent renal nerve, was assessed by real-time PCR and western blot analysis. In separate group of rats after coronary artery ligation selective afferent renal denervation (A-RDN) was performed by periaxonal application of capsaicin, then intravenous infusion of GLP-1-induced diuresis and natriuresis were evaluated. RESULTS: In HF, compared to sham-operated control; (1) response of increase in ARNA to intrapelvic injection of GLP-1 was enhanced (3.7 ± 0.4 vs. 2.0 ± 0.4 µV s), (2) GLP-1 receptor expression was increased in renal pelvis, (3) response of increase in RSNA to intravenous infusion of GLP-1 was enhanced (132 ± 30% vs. 70 ± 16% of the baseline level), and (4) diuretic and natriuretic responses to intravenous infusion of GLP-1 were blunted (urine flow 53.4 ± 4.3 vs. 78.6 ± 4.4 µl/min/gkw, sodium excretion 7.4 ± 0.8 vs. 10.9 ± 1.0 µEq/min/gkw). A-RDN induced significant increases in diuretic and natriuretic responses to GLP-1 in HF (urine flow 96.0 ± 1.9 vs. 53.4 ± 4.3 µl/min/gkw, sodium excretion 13.6 ± 1.4 vs. 7.4 ± 0.8 µEq/min/gkw). CONCLUSIONS: The excessive activation of neural circuitry involving afferent and efferent renal nerves suppresses diuretic and natriuretic responses to GLP-1 in HF. These pathophysiological responses to GLP-1 might be involved in the interaction between incretin-based medicines and established HF condition. RDN restores diuretic and natriuretic effects of GLP-1 and thus has potential beneficial therapeutic implication for diabetic HF patients.
  • Shyam Nandi, Kenichi Katsurada, Neeru Sharma, Daniel Anderson, Sushil Mahata, Kaushik Patel
    FASEB JOURNAL 34(6) H1414-H1437 2020年4月  査読有り
    An increased matrix metalloprotease9 (MMP9) during post-myocardial infarction (post-MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF, however, whether increased MMP9 suppressed autophagic activity in CHF is unknown. This study aimed to determine whether the increased MMP9 suppressed autophagic flux, and MMP9 inhibition increased autophagic flux in the heart of rats with Post-MI CHF. Sprague-Dawley rats underwent either Sham or coronary artery ligation, 6-8 weeks prior to being treated with MMP9-inhibitor for 7days, followed by cardiac autophagic flux measurement using lysosomal inhibitor BafilomycinA1. Further, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, Salvianolic-Acid-B (SalB) or MMP9-inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left-ventricular myocardium. The autophagic markers LC3B-II and p62 measurement with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7days in CHF rats decreased MMP9 activity, cardiac fibrosis, and increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition on pathological cardiac remodeling is in part mediated by improved autophagic flux.
  • Neeru M Sharma, Andrea S Haibara, Kenichi Katsurada, Xuefei Liu, Kaushik P Patel
    Nitric oxide : biology and chemistry 94 54-62 2020年1月1日  査読有り
    Activation of renin-angiotensin- system, nitric oxide (NO•) bioavailability and subsequent sympathoexcitation plays a pivotal role in the pathogenesis of many cardiovascular diseases, including hypertension. Previously we have shown increased protein expression of PIN (a protein inhibitor of nNOS: neuronal nitric oxide synthase, known to dissociate nNOS dimers into monomers) with concomitantly reduced levels of catalytically active dimers of nNOS in the PVN of rats with heart failure. To elucidate the molecular mechanism by which Angiotensin II (Ang II) increases PIN expression, we used Sprague-Dawley rats (250-300 g) subjected to intracerebroventricular infusion of Ang II (20 ng/min, 0.5 μl/h) or saline as vehicle (Veh) for 14 days through osmotic mini-pumps and NG108-15 hybrid neuronal cell line treated with Ang II as an in vitro model. Ang II infusion significantly increased baseline renal sympathetic nerve activity and mean arterial pressure. Ang II infusion increased the expression of PIN (1.24 ± 0.04* Ang II vs. 0.65 ± 0.07 Veh) with a concomitant 50% decrease in dimeric nNOS and PIN-Ub conjugates (0.73 ± 0.04* Ang II vs. 1.00 ± 0.03 Veh) in the PVN. Substrate-dependent ligase assay in cells transfected with pCMV-(HA-Ub)8 vector revealed a reduction of HA-Ub-PIN conjugates after Ang II and a proteasome inhibitor, Lactacystin (LC), treatment (4.5 ± 0.7* LC Ang II vs. 9.2 ± 2.5 LC). TUBE (Tandem Ubiquitin-Binding Entities) assay showed decrease PIN-Ub conjugates in Ang II-treated cells (0.82 ± 0.12* LC Ang II vs. 1.21 ± 0.06 LC) while AT1R blocker, Losartan (Los) treatment diminished the Ang II-mediated stabilization of PIN (1.21 ± 0.07 LC Los vs. 1.16 ± 0.04* LC Ang II Los). Taken together, our studies suggest that increased central levels of Ang II contribute to the enhanced expression of PIN leading to reduced expression of the dimeric form of nNOS, thus diminishing the inhibitory action of NO• on pre-autonomic neurons in the PVN resulting in increased sympathetic outflow.
  • Hong Zheng, Xuefei Liu, Kenichi Katsurada, Kaushik P Patel
    American journal of physiology. Heart and circulatory physiology 317(5) H958-H968 2019年11月1日  査読有り
    Previously we have shown that increased expression of renal epithelial sodium channels (ENaC) may contribute to the renal sodium and water retention observed during chronic heart failure (CHF). The goal of this study was to examine whether renal denervation (RDN) changed the expressions of renal sodium transporters ENaC, sodium-hydrogen exchanger-3 proteins (NHE3), and water channel aquaporin 2 (AQP2) in rats with CHF. CHF was produced by left coronary artery ligation in rats. Four weeks after ligation surgery, surgical bilateral RDN was performed. The expression of ENaC, NHE3, and AQP2 in both renal cortex and medulla were measured. As a functional test for ENaC activation, diuretic and natriuretic responses to ENaC inhibitor benzamil were monitored in four groups of rats (Sham, Sham+RDN, CHF, CHF+RDN). Western blot analysis indicated that RDN (1 wk later) significantly reduced protein levels of α-ENaC, β-ENaC, γ-ENaC, and AQP2 in the renal cortex of CHF rats. RDN had no significant effects on the protein expression of kidney NHE3 in both Sham and CHF rats. Immunofluorescence studies of kidney sections confirmed the reduced signaling of ENaC and AQP2 in the CHF+RDN rats compared with the CHF rats. There were increases in diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. RDN reduced the diuretic and natriuretic responses to benzamil in CHF rats. These findings suggest a critical role for renal nerves in the enhanced expression of ENaC and AQP2 and subsequent pathophysiology of renal sodium and water retention associated with CHF.NEW & NOTEWORTHY This is the first study to show in a comprehensive way that renal denervation initiated after a period of chronic heart failure reduces the expression of epithelial sodium channels and aquaporin 2 leading to reduced epithelial sodium channel function and sodium retention.
  • Kenichi Katsurada, Masanori Nakata, Toshinobu Saito, Boyang Zhang, Yuko Maejima, Shyam S Nandi, Neeru M Sharma, Kaushik P Patel, Kazuomi Kario, Toshihiko Yada
    Scientific reports 9(1) 12986-12986 2019年9月19日  査読有り
    Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used to treat type 2 diabetes, reduce blood pressure (BP) in hypertensive patients. Whether this action involves central mechanisms is unknown. We here report that repeated lateral ventricular (LV) injection of GLP-1R agonist, liraglutide, once daily for 15 days counteracted the development of hypertension in spontaneously hypertensive rats (SHR). In parallel, it suppressed urinary norepinephrine excretion, and induced c-Fos expressions in the area postrema (AP) and nucleus tractus solitarius (NTS) of brainstem including the NTS neurons immunoreactive to dopamine beta-hydroxylase (DBH). Acute administration of liraglutide into fourth ventricle, the area with easy access to the AP and NTS, transiently decreased BP in SHR and this effect was attenuated after lesion of NTS DBH neurons with anti-DBH conjugated to saporin (anti-DBH-SAP). In anti-DBH-SAP injected SHR, the antihypertensive effect of repeated LV injection of liraglutide for 14 days was also attenuated. These findings demonstrate that the central GLP-1R signaling via NTS DBH neurons counteracts the development of hypertension in SHR, accompanied by attenuated sympathetic nerve activity.
  • Neeru M Sharma, Xuefei Liu, Tamra L Llewellyn, Kenichi Katsurada, Kaushik P Patel
    Nitric oxide : biology and chemistry 87 73-82 2019年6月1日  査読有り
    Exercise training (ExT) is an established non-pharmacological therapy that improves the health and quality of life in patients with chronic heart failure (CHF). Exaggerated sympathetic drive characterizes CHF due to an imbalance of the autonomic nervous system. Neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) produce nitric oxide (NO•), which is known to regulate the sympathetic tone. Previously we have shown that during CHF, the catalytically active dimeric form of nNOS is significantly decreased with a concurrent increase in protein inhibitor of nNOS (PIN) expression, a protein that dissociates dimeric nNOS to monomers and facilitates its degradation. Dimerization of nNOS also requires (6R)-5,6,7,8-tetrahydrobiopterin (BH4) for stability and activity. Previously, we have shown that ExT improves NO-mediated sympathetic inhibition in the PVN; however, the molecular mechanism remains elusive. We hypothesized; ExT restores the sympathetic drive by increasing the levels and catalytically active form of nNOS by abrogating changes in the PIN in the PVN of CHF rats. CHF was induced in adult male Sprague-Dawley rats by coronary artery ligation, which reliably mimics CHF in patients with myocardial infarction. After 4 weeks of surgery, Sham and CHF rats were subjected to 3 weeks of progressive treadmill exercise. ExT significantly (p < 0.05) decreased PIN expression and increased dimer/monomer ratio of nNOS in the PVN of rats with CHF. Moreover, we found decreased GTP cyclohydrolase 1(GCH1) expression: a rate-limiting enzyme for BH4 biosynthesis in the PVN of CHF rats suggesting that perhaps reduced BH4 availability may also contribute to decreased nNOS dimers. Interestingly, CHF induced decrease in GCH1 expression was increased with ExT. Our findings revealed that ExT rectified decreased PIN and GCH1 expression and increased dimer/monomer ratio of nNOS in the PVN, which may lead to increase NO• bioavailability resulting in amelioration of activated sympathetic drive during CHF.
  • Hong Zheng, Kenichi Katsurada, Xuefei Liu, Mark M Knuepfer, Kaushik P Patel
    Hypertension (Dallas, Tex. : 1979) 72(3) 667-675 2018年9月  査読有り
    Renal denervation (RDN) has been shown to restore endogenous neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) and reduce sympathetic drive during chronic heart failure (CHF). The purpose of the present study was to assess the contribution of afferent renal nerves to the nNOS-mediated sympathetic outflow within the PVN in rats with CHF. CHF was induced in rats by ligation of the left coronary artery. Four weeks after surgery, selective afferent RDN (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal arteries. Seven days after intervention, nNOS protein expression, nNOS immunostaining signaling, and diaphorase-positive stained cells were significantly decreased in the PVN of CHF rats, changes that were reversed by A-RDN. A-RDN reduced basal lumbar sympathetic nerve activity in rats with CHF (8.5%±0.5% versus 17.0%±1.2% of max). Microinjection of nNOS inhibitor L-NMMA (L-NG-monomethyl arginine citrate) into the PVN produced a blunted increase in lumbar sympathetic nerve activity in rats with CHF. This response was significantly improved after A-RDN (Δ lumbar sympathetic nerve activity: 25.7%±2.4% versus 11.2%±0.9%). Resting afferent renal nerves activity was substantially increased in CHF compared with sham rats (56.3%±2.4% versus 33.0%±4.7%). These results suggest that intact afferent renal nerves contribute to the reduction of nNOS in the PVN. A-RDN restores nNOS and thus attenuates the sympathoexcitation. Also, resting afferent renal nerves activity is elevated in CHF rats, which may highlight a crucial neural mechanism arising from the kidney in the maintenance of enhanced sympathetic drive in CHF.
  • Kenichi Katsurada, Neeru M. Sharma, Hong Zheng, Xuefei Liu, Kaushik P. Patel
    FASEB JOURNAL 32(1) F1010-F1021 2018年4月  査読有り
    Glucagon-like peptide-1 (GLP-1), an incretin hormone, has diuretic and natriuretic effects. The present study was designed to explore the possible underlying mechanisms for the diuretic and natriuretic effects of GLP-1 via renal nerves in rats. Immunohistochemistry revealed that GLP-1 receptors were avidly expressed in the pelvic wall, the wall being adjacent to afferent renal nerves immunoreactive to calcitonin gene-related peptide, which is the dominant neurotransmitter for renal afferents. GLP-1 (3 μM) infused into the left renal pelvis increased ipsilateral afferent renal nerve activity (110.0 ± 15.6% of basal value). Intravenous infusion of GLP-1 (1 µg·kg-1·min-1) for 30 min increased renal sympathetic nerve activity (RSNA). After the distal end of the renal nerve was cut to eliminate the afferent signal, the increase in efferent renal nerve activity during intravenous infusion of GLP-1 was diminished compared with the increase in total RSNA (17.0 ± 9.0% vs. 68.1 ± 20.0% of the basal value). Diuretic and natriuretic responses to intravenous infusion of GLP-1 were enhanced by total renal denervation (T-RDN) with acute surgical cutting of the renal nerves. Selective afferent renal nerve denervation (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal nerves. Similar to T-RDN, A-RDN enhanced diuretic and natriuretic responses to GLP-1. Urine flow and Na+ excretion responses to GLP-1 were not significantly different between T-RDN and A-RDN groups. These results indicate that the diuretic and natriuretic effects of GLP-1 are partly governed via activation of afferent renal nerves by GLP-1 acting on sensory nerve fibers within the pelvis of the kidney.
  • Kenichi Katsurada, Toshihiko Yada
    Journal of diabetes investigation 7 Suppl 1 64-9 2016年4月  査読有り
    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists.
  • Yusaku Iwasaki, Yuko Maejima, Shigetomo Suyama, Masashi Yoshida, Takeshi Arai, Kenichi Katsurada, Parmila Kumari, Hajime Nakabayashi, Masafumi Kakei, Toshihiko Yada
    American journal of physiology. Regulatory, integrative and comparative physiology 308(5) R360-9 2015年3月1日  査読有り
    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.
  • Yuko Maejima, Kazuya Sakuma, Putra Santoso, Darambazar Gantulga, Kenichi Katsurada, Yoichi Ueta, Yuichi Hiraoka, Katsuhiko Nishimori, Shigeyasu Tanaka, Kenju Shimomura, Toshihiko Yada
    FEBS letters 588(23) 4404-12 2014年11月28日  査読有り
    Intracerebroventricular injection of oxytocin (Oxt), a neuropeptide produced in hypothalamic paraventricular (PVN) and supraoptic nuclei (SON), melanocortin-dependently suppresses feeding. However, the underlying neuronal pathway is unclear. This study aimed to determine whether Oxt regulates propiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus. Intra-ARC injection of Oxt decreased food intake. Oxt increased cytosolic Ca(2+) in POMC neurons isolated from ARC. ARC POMC neurons expressed Oxt receptors and were contacted by Oxt terminals. Retrograde tracer study revealed the projection of PVN and SON Oxt neurons to ARC. These results demonstrate the novel oxytocinergic signaling from PVN/SON to ARC POMC, possibly regulating feeding.
  • Kenichi Katsurada, Yuko Maejima, Masanori Nakata, Misato Kodaira, Shigetomo Suyama, Yusaku Iwasaki, Kazuomi Kario, Toshihiko Yada
    Biochemical and biophysical research communications 451(2) 276-81 2014年8月22日  査読有り
    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.
  • Kenichi Katsurada, Masaru Ichida, Masako Sakuragi, Megumi Takehara, Yasuo Hozumi, Kazuomi Kario
    SpringerPlus 3 620-620 2014年  査読有り
    The humanized monoclonal antibody trastuzumab has been in routine use for chemotherapy for human epidermal growth factor receptor II (HER2)-positive breast cancer. A major adverse effect of trastuzumab is cardiotoxicity. Well-established biomarkers or echocardiographic parameters to predict trastuzumab-induced cardiotoxicity have not yet been determined. We attempted to identify useful biomarkers and/or echocardiographic parameters to predict trastuzumab-induced cardiotoxicity. We prospectively investigated the cases of 19 women who received chemotherapy including anthracyclines and trastuzumab for HER2-positive breast cancer. We measured cardiac biomarkers and echocardiographic parameters before their chemotherapy and every 3 months up to 15 months until the end of the adjuvant trastuzumab therapy. We divided the patients into two groups: group R was the nine patients who showed a reduction of left ventricular ejection fraction (LVEF) ≥5%, and group N was the 10 patients who showed a reduction of LVEF <5%. The high-sensitivity troponin T (hs-TnT) level at 6 months was significantly higher in group R than in group N (11.0 ± 7.8 pg/mL vs. 4.0 ± 1.4 pg/mL, p < 0.01). The hs-TnT level with a cutoff value of 5.5 pg/mL at 6 months had 78% sensitivity and 80% specificity for predicting a reduction of LVEF at 15 months. In our evaluation of echocardiographic parameters at baseline, the diastolic function was more impaired in group R than in group N. The hs-TnT and echocardiographic parameters of diastolic function could be useful to predict trastuzumab-induced cardiotoxicity.
  • Masaru Ichida, Kenichi Katsurada, Takahiro Komori, Jun Matsumoto, Akihide Ohkuchi, Akio Izumi, Shigeki Matsubara, Takeshi Mitsuhashi, Kazuomi Kario
    Journal of cardiology cases 2(1) e28-e31 2010年8月  査読有り
    Peripartum cardiomyopathy (PPCM) is a rare but potentially life-threatening disorder that occurs in late pregnancy or the early puerperium despite optimal medical therapy. Recently, oxidative stress-mediated generation of antiangiogenic and proapoptotic 16-kDa prolactin, and subsequent impaired cardiac microvascularization have been related to PPCM. In turn, prolactin blockade with bromocriptine has been proven successful in preventing the onset of PPCM in mice and in patients at high risk for the disease. Here, we report the efficacy of bromocriptine for treatment of a patient with PPCM.

MISC

 48
  • 田中 裕郷, 澤城 大悟, 桂田 健一, 原田 顕治, 関島 良樹, 松浦 徹, 苅尾 七臣
    日本内科学会関東地方会 688回 26-26 2023年7月  
  • 桂田 健一, 苅尾 七臣
    医学のあゆみ 285(6) 557-564 2023年5月  
    遠心性腎交感神経の活性化は,レニン分泌促進,Na再吸収促進,腎血流低下による抗利尿作用の亢進に加え,さまざまなストレス・ホルモン・薬剤に対する利尿反応の変化やNa・水再吸収に関わる腎チャネル・トランスポーター発現の変化に関与している.他方で,求心性腎神経のシグナルは視床下部室傍核(PVN)へ入力し,全身への交感神経の出力を調整している.遠心性および求心性腎神経の不適切な活性化は血圧上昇や体液貯留をもたらし,交感神経活性化を背景とした高血圧や心不全病態を助長している.これらの神経性調節はノルエピネフリンのカテコールアミン受容体への直接作用に加え,レニン-アンジオテンシン-アルドステロン系や脳内炎症免疫系,一酸化窒素を介した作用機序などが含まれる.腎除神経(腎デナベーション)は,中枢から腎臓への遠心路(出力)および腎臓から中枢への求心路(入力)を遮断することで交感神経活性化の悪循環を断ち,高血圧や心不全病態を改善することが期待される.(著者抄録)
  • 桂田 健一, 今井 靖
    細胞 55(4) 231-234 2023年4月  
    SGLT2阻害薬は心不全診療に欠かせない治療薬として汎用されているが,心不全改善の作用機序については不明な点も多い。心不全では慢性的な腎交感神経活性化によりノルエピネフリンを介したSGLT2の膜輸送が促進され,SGLT2の発現が亢進し,ナトリウム再吸収による体液貯留病態が助長される。SGLT2阻害薬はSGLT2の発現レベルを是正し,容量負荷時の利尿反応を正常化することが示されており,その作用機序として腎交感神経活性の抑制が示唆される。心不全では求心性腎神経の活性化が中枢を介した遠心性腎交感神経の過剰な活性化に結び付いており,SGLT2阻害薬は腎組織の低酸素や炎症,酸化ストレスなどの環境変化を介して求心性腎神経活動を抑制することで,中枢を介して全身の交感神経出力を抑制する可能性が考えられる。本稿では心不全における,これらのSGLT2-腎神経の双方向性の連関について概説する。(著者抄録)
  • Kenichi Katsurada
    JOURNAL OF HYPERTENSION 41 E163-E164 2023年1月  
  • Kenichi Katsurada, Shyam S. Nandi, Kaushik P. Patel, Kazuomi Kario
    JOURNAL OF HYPERTENSION 41 E112-E113 2023年1月  

共同研究・競争的資金等の研究課題

 6