医学部 解剖学講座

三木 玄方

Harukata Miki

基本情報

所属
自治医科大学 医学部 解剖学講座解剖学部門 講師
学位
医学博士(東京大学)

J-GLOBAL ID
201401034377614178
researchmap会員ID
B000238466

外部リンク

論文

 13
  • Shinya Mochizuki, Harukata Miki, Ruyun Zhou, Yasuko Noda
    Biochemistry and biophysics reports 30 101257-101257 2022年7月  
    Oxysterol-binding protein (OSBP)-related protein (ORP) 6, a member of subfamily III in the ORP family, localizes to membrane contact sites between the endoplasmic reticulum (ER) and other organelles and functions in non-vesicular exchange of lipids including phosphatidylinositol-4-phosphate (PI4P) in neurons. In this study, we searched for the lipid counter-transported in exchange for PI4P by using molecular cell biology techniques. Deconvolution microscopy revealed that knockdown of ORP6 partially shifted localization of a phosphatidylserine (PS) marker but not filipin in primary cultured cerebellar neurons. Overexpression of ORP6 constructs lacking the OSBP-related ligand binding domain (ORD) resulted in the same shift of the PS marker. A PI4KⅢα inhibitor specifically inhibiting the synthesis and plasma membrane (PM) localization of PI4P, suppressed the localization of ORP6 and the PS marker at the PM. Overexpression of mutant PS synthase 1 (PSS1) inhibited transport of the PS marker to the PM and relocated the PI4P marker to the PM in Neuro-2A cells. Introduction of ORP6 but not the dominant negative ORP6 constructs, shifted the localization of PS back to the PM. These data collectively suggest the involvement of ORP6 in the counter-transport of PI4P and PS.
  • Wataru Nishimura, Yuki Takayanagi, Munkhtuya Tumurkhuu, Ruyun Zhou, Harukata Miki, Yasuko Noda
    Physiology & behavior 234 113386-113386 2021年5月15日  
    Long-term and mild confinement or isolation in an enclosed environment can occur in situations such as disasters, specific political, economic or social events, nuclear shelters, seabed exploration, polar expeditions, and space travel. To investigate the effects of stress caused by long-term confinement in an enclosed environment in mammals, we divided 8-week-old C57BL/6J mice into four groups that were housed in a closed environment with a narrow metabolic cage (stress group), normal metabolic cage (control group), conventional cage (conventional group) or conventional cage with wire mesh floor (wire mesh group). The phenotypes of the mice were examined for four weeks, followed by behavioral tests. Weight gain suppression was observed in the stress group. Continuous analysis of these mice every two minutes for four weeks using an implanted measuring device showed a significantly decreased amount of spontaneous activity and subcutaneous temperature in the stress group. After housing in each environment for four weeks, the behavioral tests of mice in the stress group also revealed a shorter latency to fall off in the rotarod test and shorter stride length and interstep distance in the footprint test. Interestingly, the lower spontaneous activity of mice in the stress group was rescued by housing in conventional cages. These results suggest a temporary effect of long-term confinement in an enclosed environment as a chronic and mild stress on homeostasis in mammals.
  • Shinya Mochizuki, Harukata Miki, Ruyun Zhou, Yukiharu Kido, Wataru Nishimura, Motoshi Kikuchi, Yasuko Noda
    Experimental cell research 370(2) 601-612 2018年9月15日  
    Oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved lipid binding proteins found in organisms ranging from yeast to mammals. Recent findings have indicated that these proteins mainly localize to contact sites of 2 different membranous organelles. ORP6, a member of the ORP subfamily III, is one of the least studied ORPs. Using approaches in molecular cell biology, we attempted to study the characteristics of ORP6 and found that ORP6 is abundantly expressed in mouse cultured neurons. Deconvolution microscopy of cultured cerebellar granular cells revealed that ORP6 is localized to the endoplasmic reticulum (ER) and ER-plasma membrane (PM) contact sites, where it co-localized with extended synaptotagmin2 (E-Syt2), a well-known ER-PM contact site marker. E-Syt2 also co-localized with ORP3, another subfamily III member, and ORP5, a subfamily IV member. However, ORP5 does not distribute to the same ER-PM contact sites as subfamily III members. Also, the co-expression of ORP3 but not ORP5 altered the distribution of ORP6 into the processes of cerebellar neurons. Immunoprecipitation demonstrated binding between the intermediate region of ORP6 and ORP3 or ORP6 itself. Additionally, the localization of ORP6 in the PM decreased when co-expressed with the intermediate region of ORP6, in which the pleckstrin homology (PH) domain and OSBP-related ligand binding domain (ORD) are deleted. Over-expression of this intermediate region shifted the location of a phophtidylinositol-4-phosphate (PI4P) marker from the Golgi to the PM. Knockdown of ORP6 resulted in the same shift of the PI4P marker. Collectively, our data suggests that the recruitment of ORP6 to ER-PM contact sites is involved in the turnover of PI4P in cerebellar granular neurons.
  • Souichi Oe, Harukata Miki, Wataru Nishimura, Yasuko Noda
    Cell structure and function 41(1) 23-31 2016年3月26日  
    Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor critical for synaptic plasticity, neuronal development and neurite extension. BDNF mRNA is transported to dendrites and axons, where it is expressed locally. We previously reported that dendritic targeting elements in the BDNF 3' UTR are necessary for dendritic transport and interact with cytoplasmic polyadenylation element binding protein 1. Here, we demonstrated that the short 3' UTR directs local translation of BDNF and that locally synthesized BDNF exists in a novel compartment that does not co-localize with markers of endosomes, endoplasmic reticulum, Golgi or the trans-Golgi network. Further, locally synthesized BDNF vesicles co-localized with Bicaudal-D2 (BicD2), a member of dynein motor complex proteins. Silencing BicD2 significantly reduced BDNF local synthesis in dendrites. These new findings may underlie the mechanism of local neuronal response to environmental stimuli.
  • Wataru Nishimura, Naoko Ishibashi, Koki Eto, Nobuaki Funahashi, Haruhide Udagawa, Harukata Miki, Souichi Oe, Yasuko Noda, Kazuki Yasuda
    Journal of molecular endocrinology 55(1) 31-40 2015年8月  
    Recent studies suggest that dedifferentiation of pancreatic β-cells is involved in compromised β-cell function in diabetes mellitus. We have previously shown that the promoter activity of MafB, which is expressed in α-cells of adult islets and immature β-cells in embryonic pancreas but not in mature β-cells in mice, is increased in compromised β-cells of diabetic model mice. Here, we investigated a rat β-cell line of INS1 cells with late-passage numbers, which showed extremely low expression of MafA and insulin, as an in vitro model of compromised β-cells. In these INS1 cells, the mRNA expression and the promoter activity of MafB were upregulated compared with the early-passage ('conventional') INS1 cells. Analysis of the MafB promoter in these late-passage INS1 cells revealed that specific CpG sites in the MafB promoter were partially demethylated. The reporter assay revealed that the unmethylated promoter activity of the 373 bp region containing these CpG sites was higher than the in vitro methylated promoter activity. These results suggest that the chronic culture of the rat β-cell line resulted in partial DNA demethylation of the MafB promoter, which may have a role in MafB promoter activation and possible dedifferentiation in our compromised β-cell model.

MISC

 3

書籍等出版物

 1

共同研究・競争的資金等の研究課題

 2