医学部 解剖学講座 組織学部門

永井 裕崇

ナガイ ヒロタカ  (Hirotaka Nagai)

基本情報

所属
自治医科大学 医学部組織学部門 准教授
学位
博士(医学)(京都大学)

研究者番号
30814587
J-GLOBAL ID
201701018685256603
researchmap会員ID
B000281797

論文

 33
  • Hirotaka Nagai
    Microscopy (Oxford, England) 2024年7月24日  査読有り招待有り筆頭著者最終著者責任著者
    Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex (mPFC) is analogous to the human subgenual anterior cingulate cortex (sgACC) in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex (DLPFC). It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the sgACC and DLPFC of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular, and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the mPFC caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.
  • Io Horikawa, Hirotaka Nagai, Masayuki Taniguchi, Guowei Chen, Masakazu Shinohara, Tomohide Suzuki, Shinichi Ishii, Yoshio Katayama, Shiho Kitaoka, Tomoyuki Furuyashiki
    Journal of pharmacological sciences 154(4) 279-293 2024年4月  査読有り筆頭著者責任著者
    Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
  • Satoshi Akiyama, Hirotaka Nagai, Shota Oike, Io Horikawa, Masakazu Shinohara, Yabin Lu, Takashi Futamura, Ryota Shinohara, Shiho Kitaoka, Tomoyuki Furuyashiki
    Scientific Reports 12(1) 2022年12月  査読有り
    Abstract Severe and prolonged social stress induces mood and cognitive dysfunctions and precipitates major depression. Neuroinflammation has been associated with chronic stress and depression. Rodent studies showed crucial roles of a few inflammation-related lipid mediators for chronic stress-induced depressive-like behaviors. Despite an increasing number of lipid mediators identified, systematic analyses of synthetic pathways of lipid mediators in chronic stress models have not been performed. Using LC–MS/MS, here we examined the effects of chronic social defeat stress on multiple synthetic pathways of lipid mediators in brain regions associated with stress susceptibility in mice. Chronic social defeat stress increased the amounts of 12-lipoxygenase (LOX) metabolites, 12-HETE and 12-HEPE, specifically in the nucleus accumbens 1 week, but not immediately, after the last stress exposure. The increase was larger in stress-resilient mice than stress-susceptible mice. The S isomer of 12-HETE was selectively increased in amount, indicating the role of 12S-LOX activity. Among the enzymes known to have 12S-LOX activity, only Alox12 mRNA was reliably detected in the brain and enriched in brain endothelial cells. These findings suggest that chronic social stress induces a late increase in the amounts of 12S-LOX metabolites derived from the brain vasculature in the nucleus accumbens in a manner associated with stress resilience.
  • Yusuke Kawashima, Hirotaka Nagai, Ryo Konno, Masaki Ishikawa, Daisuke Nakajima, Hironori Sato, Ren Nakamura, Tomoyuki Furuyashiki, Osamu Ohara
    Journal of proteome research 21(6) 1418-1427 2022年5月6日  査読有り
    The evolution of mass spectrometry (MS) and analytical techniques has led to the demand for proteome analysis with high proteome coverage in single-shot measurements. Focus has been placed on data-independent acquisition (DIA)-MS and ion mobility spectrometry as techniques for deep proteome analysis. We aimed to expand the proteome coverage by single-shot measurements using optimizing high-field asymmetric waveform ion mobility spectrometry parameters in DIA-MS. With our established proteome analysis system, more than 10,000 protein groups were identified from HEK293 cell digests within 120 min of MS measurement time. Additionally, we applied our approach to the analysis of host proteins in mouse feces and detected as many as 892 host protein groups (771 upregulated/121 downregulated proteins) in a mouse model of repeated social defeat stress (R-SDS) used in studying depression. Interestingly, 285 proteins elevated by R-SDS were related to mental disorders. The fecal host protein profiling by deep proteome analysis may help us understand mental illness pathologies noninvasively. Thus, our approach will be helpful for an in-depth comparison of protein expression levels for biological and medical research because it enables the analysis of highly proteome coverage in a single-shot measurement.
  • Hirotaka Nagai, Luisa de Vivo, William Marshall, Giulio Tononi, Chiara Cirelli
    eneuro 8(4) ENEURO.0077-21.2021 2021年6月30日  査読有り筆頭著者
    Abstract There is molecular, electrophysiological, and ultrastructural evidence that a net increase in synaptic strength occurs in many brain circuits during spontaneous wake (SW) or short sleep deprivation, reflecting ongoing learning. Sleep leads instead to a broad but selective weakening of many forebrain synapses, thus preventing synaptic saturation and decreasing the energy cost of synaptic activity. Whether synaptic potentiation can persist or further increase after long sleep deprivation is unknown. Whether synaptic renormalization can occur during chronic sleep restriction (CSR) is also unknown. Here, we addressed these questions by measuring an established ultrastructural measure of synaptic strength, the axon-spine interface (ASI), in the primary motor cortex (M1) of (1) one-month-old adolescent mice CSR using a paradigm that decreases NREM and REM sleep by two/thirds; (2) in two-week-old mouse pups sleep deprived for 15 h, or allowed afterward to recover for 16 h. Both groups were compared with mice of the same age that were asleep or awake for a few hours (both sexes). The ASI size of CSR mice (n = 3) was comparable to that measured after SW or short sleep deprivation and larger than after sleep (n = 4/group). In pups, the ASI size increased after short sleep loss (n = 3) relative to sleep (n = 4), fell below sleep levels after long sleep deprivation (n = 4), and remained low after recovery (n = 3). Long sleep deprived pups also lost some weight. These results suggest that (1) severe sleep restriction is incompatible with synaptic renormalization; (2) very young mice cannot maintain high synaptic strength during prolonged wake.

MISC

 59
  • NAGAI Midori, NAGAI Hirotaka, NUMA Chisato, NADANAKA Satomi, KAWASHIMA Yusuke, OHNO Nobuhiko, KITAGAWA Hiroshi, FURUYASHIKI Tomoyuki
    日本薬理学会年会要旨集(Web) 97th 2023年  
  • 沼知里, 永井裕崇, 永井碧, 山下朋美, 川島祐介, 大野伸彦, 片岡洋祐, 片岡洋祐, 三森(清末)優子, 加藤太朗, 古屋敷智之
    日本神経化学会大会抄録集(Web) 65th 2022年  
  • 沼 知里, 永井 裕崇, 永井 碧, 山下 朋美, 川島 祐介, 大野 伸彦, 片岡 洋祐, 清末 優子, 加藤 太朗, 古屋敷 智之
    日本薬理学会年会要旨集 95 1-SS-13 2022年  
    Chronic social stress induces neuronal dysfunctions in the medial prefrontal cortex (mPFC) for emotional and cognitive disturbances. However, the subcellular mechanism remains elusive. Here we examined ultrastructural and multi-omics changes in the mPFC in a mouse model of social defeat stress. Acute stress induced dendritic membrane deformation with mitochondrial swelling in mPFC neurons, leading to dendritic atrophy after chronic stress. Synaptic, but not bulk tissue, proteomes in the mPFC differentiated naïve and stressed mice and further uncovered two distinct states in stressed mice. Proteins involved in mitochondrial metabolic functions mostly decreased with chronic stress regardless of the synaptic proteomic state. By contrast, proteins responsible for mitochondrial homeostasis increased in stressed mice with a specific synaptic proteomic state associated with behavioral resilience to chronic stress. These findings suggest that the balance between mitochondrial metabolic dysfunction and its maintenance at mPFC synapses determines stress susceptibility in mice.
  • 永井 裕崇, 永井 碧, 沼 知里, 山下 朋美, 川島 祐介, 大野 伸彦, 片岡 洋祐, 新間 秀一, 清末 優子, 加藤 太朗, 曽我 朋義, 古屋敷 智之
    日本薬理学会年会要旨集 95 1-YIA-11 2022年  
    Chronic social stress induces emotional and cognitive disturbances and is a risk for mental illness. Reduced neuronal activity in the medial prefrontal cortex (mPFC) underlies these behavioral abnormalities. However, the subcellular origin and process of this neuronal change remain elusive. Here we examined ultrastructural and multi-omics changes in the mPFC with social stress in mice. Social stress caused the loss of dendritic branches with morphological alterations of mitochondria and induced synaptic shrinkage selectively at mitochondria-containing synapses. Social stress deteriorated mitochondrial functions at synapses with altered mitochondrial proteome and central metabolism in the mPFC. Pharmacological manipulation targeting mitochondria attenuated the synaptic shrinkage and depression-related behaviors. These findings show that chronic social stress alters the central metabolism at mPFC synapses, leading to neuronal pathology and depression-related behaviors.
  • 山田 留衣, 永井 裕崇, 沼 知里, 堀川 伊和, 永井 碧, 川島 祐介, 古屋敷 智之
    日本薬理学会年会要旨集 95 1-SS-43 2022年  
    Aging causes cognitive and motivational declines, but the biological basis remains elusive. Here we analyzed distinct behavioral effects of aging in C57BL6N (B6N) and C57BL/6J (B6J) strains. In this study, mice first learned a visual discrimination task to obtain food rewards by responding to the correct one of two visual stimuli. Then, they learned a response direction task of responding to either left or right for food rewards. Attentional set-shifting, behavioral flexibility between the tasks, is known to depend on working memory. Aged B6N mice showed motivational declines in both tasks. By contrast, task motivation was intact in aged B6J mice, but some of them showed a deficit in attentional set-shifting. We also analyzed synaptic proteomes in the medial prefrontal cortex, a brain region crucial for attentional set-shifting. Young and aged B6J mice showed differential expression of many synaptic proteins, some of which increased only in a subset of the aged mice with attentional set-shifting intact. These findings suggest that different biological mechanisms related to genetic and synaptic factors underlie motivation and cognitive declines with aging.

書籍等出版物

 2

講演・口頭発表等

 13

共同研究・競争的資金等の研究課題

 3