分子病態治療研究センター

花園 豊

ハナゾノ ユタカ  (Yutaka Hanazono)

基本情報

所属
自治医科大学 分子病態治療研究センター再生医学研究部 教授
学位
博士(医学)(東京大学)

J-GLOBAL ID
201401078781431912
researchmap会員ID
B000237883

外部リンク

論文

 66
  • Hitomi Matsunari, Masahito Watanabe, Kazuaki Nakano, Shin Enosawa, Kazuhiro Umeyama, Ayuko Uchikura, Sayaka Yashima, Toru Fukuda, Nikolai Klymiuk, Mayuko Kurome, Barbara Kessler, Annegret Wuensch, Valeri Zakhartchenko, Eckhard Wolf, Yutaka Hanazono, Masaki Nagaya, Akihiro Umezawa, Hiromitsu Nakauchi, Hiroshi Nagashima
    Proceedings of the National Academy of Sciences of the United States of America 115(4) 708-713 2018年1月23日  査読有り
    Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.
  • Eiji Kobayashi, Yutaka Hanazono, Satoshi Kunita
    Experimental Animals 67(1) 7-13 2018年  査読有り
    Center for Development of Advanced Medical Technology (CDAMTec) in Jichi Medical University was established in 2009. It is the first educational research facility specialized for medical research and training using swine in Japan. Preclinical studies on large animals are essential prior to clinical trials to develop regenerative medical products and medical equipment. We have continued comprehensively considering using miniature swine for experiments to develop advanced medical technologies and train physicians with advanced clinical abilities, while paying attention to animal welfare. The center plays a pioneering role in this field by accumulating know-how such as (1) Construction and effective utilization of research facilities, (2) Procurement of quality animal resources, (3) Education and training of technical staff, (4) Establishment of support system for physicians and researchers. We now open up widely these expertise and foundation for medical research and training not only within our university but also outside the university, so as to move faster to practical use of advanced medical technology and contribute to human health and welfare.
  • Hiromasa Hara, Hiroaki Shibata, Kazuaki Nakano, Tomoyuki Abe, Hideki Uosaki, Takahiro Ohnuki, Shuji Hishikawa, Satoshi Kunita, Masahito Watanabe, Osamu Nureki, Hiroshi Nagashima, Yutaka Hanazono
    Experimental Animals 67(2) 139-146 2018年  査読有り
    Pigs with X-linked severe combined immunodeficiency (X-SCID) caused by a mutation of the interleukin-2 receptor gamma chain gene (IL2RG) are of value for a wide range of studies. However, they do not survive longer than 8 weeks because of their susceptibility to infections. To allow longer survival of X-SCID pigs, the animals must be born and reared under germ-free conditions. Here, we established an efficient system for piglet derivation by hysterectomy and used it to obtain and maintain a germ-free X-SCID pig. In four trials using pregnant wild-type pigs, 66% of piglets after hysterectomy started spontaneous breathing (range of 20–100% per litter). The resuscitation rate was found to negatively correlate with elapsed time from the uterus excision to piglet derivation (r=−0.97, P&lt 0.05). Therefore, it is critical to deliver piglets within 5 min to achieve a high resuscitation rate (82% estimated from regression analysis). In a fifth trial with an IL2RG+/− pig, four piglets were delivered within 4.2 min of uterus excision and three were alive (75%). One of the live born piglets was genotypically and phenotypically determined to be X-SCID and was reared for 12 weeks. The X-SCID piglet was free from both bacteria and fungi at all time points tested by microbial culture and grew without any abnormal signs or symptoms. This study showed successful production and rearing of germ-free pigs, enabling experiments involving long-term follow-up of X-SCID pigs.
  • Naoki Osada, Jiro Kikuchi, Takashi Umehara, Shin Sato, Masashi Urabe, Tomoyuki Abe, Nakanobu Hayashi, Masahiko Sugitani, Yutaka Hanazono, Yusuke Furukawa
    Oncotarget 9(5) 6450-6462 2018年  査読有り
    Human induced pluripotent stem cells (hiPSCs) are creating great expectations for regenerative medicine. However, safety strategies must be put in place to guard against teratoma formation after transplantation of hiPSC-derived cells into patients. Recent studies indicate that epigenetic regulators act at the initial step of tumorigenesis. Using gain-of-function and loss-of-function approaches, we show here that the expression and function of lysine-specific demethylase 1 (LSD1) are tightly regulated in hiPSCs, and their deregulation underlies the development of teratomas. Consistent with these results, we demonstrate that an LSD1 inhibitor, S2157, prevented teratoma formation from hiPSCs transplanted into immunodeficient mice. This novel action of LSD1 and the effects of its inhibition potentially allow for the development of new clinical applications and therapeutic strategies using hiPSCs.
  • Tomoyuki Abe, Yoshikazu Matsuoka, Yoshikazu Nagao, Yoshiaki Sonoda, Yutaka Hanazono
    INTERNATIONAL JOURNAL OF HEMATOLOGY 106(5) 631-637 2017年11月  査読有り
    We and others have reported that human hematopoietic stem cells (HSCs) are also present in the CD34-negative (CD34(-)) fraction of human cord blood (CB). Here, we examined the hematopoietic engraftment potential of 13 or 18 lineage-negative (13Lin(-) or 18Lin(-)) CD34(+/-) cells from human CB in mice and sheep. Both 13Lin(-) and 18Lin(-) CD34(+) cells efficiently engrafted in mice irrespective of transplantation route, be it by tail-vein injection (TVI) or by intra-bone marrow injection (IBMI). These cells also engrafted in sheep after in utero fetal intra-hepatic injection (IHI). In contrast, neither 13Lin(-) nor 18Lin(-) CD34(-) cells engrafted in either mice or sheep when transplanted by regular routes (i.e., TVI and fetal IHI, respectively), although both 13Lin(-) and 18Lin(-) CD34(-) cells engrafted in mice when transplanted by IBMI and exhibited multilineage reconstitution ability. Thus, the homing ability of CD34(-) HSCs is significantly more limited than that of CD34(+) HSCs. As for 18Lin(-), CD34(-) HSCs are characterized by low expression of the tetraspanin CD9, which promotes homing, and high expression of the peptidase CD26, which inhibits homing. This unique expression pattern homing-related molecules on CD34(-) HSCs could thus explain in part their reduced ability to home to the BM niche.

MISC

 27

産業財産権

 10