研究者業績

太田 聡

オオタ サトシ  (Satoshi Ohta)

基本情報

所属
自治医科大学 医学部 生化学講座構造生化学部門 講師
学位
バイオサイエンス博士(奈良先端科学技術大学院大学)

J-GLOBAL ID
201401081432958696
researchmap会員ID
B000237943

論文

 25
  • Satoshi Ohta, Kenji Tago, Katsumi Kasashima, Masayuki Ebina, Kaoru Tominaga
    International Journal of Molecular Sciences 2025年10月25日  査読有り筆頭著者責任著者
  • Tominari Kobayashi, Masaharu Takahashi, Satoshi Ohta, Yu Hoshino, Kentaro Yamada, Suljid Jirintai, Putu Prathiwi Primadharsini, Shigeo Nagashima, Kazumoto Murata, Hiroaki Okamoto
    Viruses 2024年8月31日  査読有り
  • Kengo Takeda, Satoshi Ohta, Miu Nagao, Erika Kobayashi, Kenji Tago, Megumi Funakoshi-Tago
    International journal of molecular sciences 25(7) 2024年3月26日  査読有り
    Chronic myeloid leukemia (CML) is induced by the expression of the fused tyrosine kinase BCR-ABL, which is caused by a chromosomal translocation. BCR-ABL inhibitors have been used to treat CML; however, the acquisition of resistance by CML cells during treatment is a serious issue. We herein demonstrated that BCR-ABL induced the expression of the RNA helicase DDX5 in K562 cells derived from CML patients in a manner that was dependent on its kinase activity, which resulted in cell proliferation and survival. The knockout of DDX5 decreased the expression of BIRC5 (survivin) and activated caspase 3, leading to apoptosis in K562 cells. Similar results were obtained in cells treated with FL118, an inhibitor of DDX5 and a derivative compound of camptothecin (CPT). Furthermore, FL118 potently induced apoptosis not only in Ba/F3 cells expressing BCR-ABL, but also in those expressing the BCR-ABL T315I mutant, which is resistant to BCR-ABL inhibitors. Collectively, these results revealed that DDX5 is a critical therapeutic target in CML and that FL118 is an effective candidate compound for the treatment of BCR-ABL inhibitor-resistant CML.
  • Sawako Tamaki, Koichi Suzuki, Iku Abe, Yuhei Endo, Nao Kakizawa, Fumiaki Watanabe, Masaaki Saito, Shingo Tsujinaka, Yasuyuki Miyakura, Satoshi Ohta, Kenji Tago, Ken Yanagisawa, Fumio Konishi, Toshiki Rikiyama
    Scientific reports 12(1) 10999-10999 2022年6月29日  査読有り
    Overexpression of satellite RNAs in heterochromatin induces chromosomal instability (CIN) through the DNA damage response and cell cycle checkpoint activation. Although satellite RNAs may be therapeutic targets, the associated mechanisms underlying drug sensitivity are unknown. Here, we determined whether satellite RNAs reflect drug sensitivity to the topoisomerase I inhibitor camptothecin (CPT) via CIN induction. We constructed retroviral vectors expressing major satellite and control viruses, infected microsatellite stable mouse colon cancer cells (CT26) and MC38 cells harboring microsatellite instability, and assessed drug sensitivity after 48 h. Cells overexpressing satellite RNAs showed clear features of abnormal segregation, including micronuclei and anaphase bridging, and elevated levels of the DNA damage marker γH2AX relative to controls. Additionally, overexpression of satellite RNAs enhanced MC38 cell susceptibility to CPT [half-maximal inhibitory concentration: 0.814 μM (control) vs. 0.332 μM (MC38 cells with a major satellite), p = 0.003] but not that of CT26. These findings imply that MC38 cells, which are unlikely to harbor CIN, are more susceptible to CIN-induced CPT sensitivity than CT26 cells, which are characterized by CIN. Furthermore, CPT administration upregulated p53 levels but not those of p21, indicating that overexpression of major satellite transcripts likely induces CPT-responsive cell death rather than cellular senescence.
  • Satoshi Ohta, Kenji Tago, Takahiro Kuchimaru, Megumi Funakoshi‐Tago, Hisanaga Horie, Chihiro Aoki‐Ohmura, Jitsuhiro Matsugi, Ken Yanagisawa
    The FEBS Journal 289(7) 1950-1967 2021年11月6日  査読有り筆頭著者責任著者
    Ras genes are frequently mutated in many cancer types; however, there are currently no conclusively effective anticancer drugs against Ras-induced cancer. Therefore, the downstream effectors of Ras signaling need to be identified for the development of promising novel therapeutic approaches. We previously reported that oncogenic Ras induced the expression of NF-HEV/IL-33, a member of the interleukin-1 family, and showed that intracellular IL-33 was required for oncogenic Ras-induced cellular transformation. In the present study, we demonstrated that the c-Mer proto-oncogene tyrosine kinase (MerTK), a receptor tyrosine kinase, played essential roles in oncogenic Ras/IL-33 signaling. The expression of MerTK was enhanced in transformed NIH-3T3 cells by the expression of oncogenic Ras, H-Ras (G12V), in an IL-33-dependent manner. In human colorectal cancer tissues, MerTK expression also correlated with IL-33 expression. The knockdown of IL-33 or MerTK effectively attenuated the migration of NIH-3T3 cells transformed by H-Ras (G12V) and A549, LoVo, and HCT116 cells harboring an oncogenic K-Ras mutation. Furthermore, the suppression of Ras-induced cell migration by the knockdown of IL-33 was rescued by the enforced expression of MerTK. The present results also revealed that MerTK was effectively phosphorylated in NIH-3T3 cells transformed by Ras (G12V). Ras signaling was essential for the tyrosine phosphorylation of MerTK, and the kinase activity of MerTK was indispensable for accelerating cell migration. Collectively, the present results reveal a novel role for MerTK in cancer malignancy, which may be utilized to develop novel therapeutic strategies that target Ras-transformed cells.

MISC

 15

講演・口頭発表等

 16

共同研究・競争的資金等の研究課題

 4