Takayuki Nagae, Yuya Fujita, Tatsuya Tsuchida, Takanari Kamo, Ryoka Seto, Masako Hamada, Hiroshi Aoyama, Ayana Sato-Tomita, Tomotsumi Fujisawa, Toshihiko Eki, Yohei Miyanoiri, Yutaka Ito, Takahiro Soeta, Yutaka Ukaji, Masashi Unno, Masaki Mishima, Yuu Hirose
Science Advances 10(24) 2024年6月14日 査読有り
Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15- Z , anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15- E , syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.