基本情報
- 所属
- 自治医科大学 分子病態治療研究センター 遺伝子治療研究部 教授
- 学位
- 医学博士(自治医科大学(JMU))M.D.
- J-GLOBAL ID
- 200901034663759310
- researchmap会員ID
- 1000273320
- 外部リンク
研究キーワード
6研究分野
1経歴
11-
2014年 - 現在
-
2011年 - 2014年
-
2004年 - 2011年
-
1998年 - 2003年
-
1995年 - 1998年
学歴
1-
- 1986年
委員歴
5-
2012年 - 現在
-
2003年
論文
204-
Molecular Neurobiology 2024年11月It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
-
Vaccines 12(10) 1155-1155 2024年10月10日Background/Objectives: We developed a multistage Plasmodium falciparum vaccine using a heterologous prime-boost immunization strategy. This involved priming with a highly attenuated, replication-competent vaccinia virus strain LC16m8Δ (m8Δ) and boosting with adeno-associated virus type 1 (AAV1). This approach demonstrated 100% efficacy in both protection and transmission-blocking in a murine model. In this study, we compared our LC16m8∆/AAV1 vaccine, which harbors a gene encoding Pfs25-PfCSP fusion protein, to RTS,S/AS01 (RTS,S) in terms of immune responses, protective efficacy, and transmission-blocking activity (TBA) in murine models. Methods: Mice were immunized following prime-boost vaccine regimens m8∆/AAV1 or RTS,S and challenged with transgenic Plasmodium berghei parasites. Immune responses were assessed via ELISA, and TB efficacy was evaluated using direct feeding assays. Results: m8∆/AAV1 provided complete protection (100%) in BALB/c mice and moderate (40%) protection in C57BL/6 mice, similar to RTS,S. Unlike RTS,S’s narrow focus (repeat region), m8∆/AAV1 triggered antibodies for all PfCSP regions (N-terminus, repeat, and C-terminus) with balanced Th1/Th2 ratios. Regarding transmission blockade, serum from m8∆/AAV1-vaccinated BALB/c mice achieved substantial transmission-reducing activity (TRA = 83.02%) and TB activity (TBA = 38.98%)—attributes not observed with RTS,S. Furthermore, m8∆/AAV1 demonstrated durable TB efficacy (94.31% TRA and 63.79% TBA) 100 days post-immunization. Conclusions: These results highlight m8∆/AAV1′s dual action in preventing sporozoite invasion and onward transmission, a significant advantage over RTS,S. Consequently, m8∆/AAV1 represents an alternative and a promising vaccine candidate that can enhance malaria control and elimination strategies.
-
Communications biology 7(1) 642-642 2024年5月27日Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.
-
Frontiers in Immunology 15 2024年4月30日Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25–PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.
MISC
187-
Society for Neuroscience 2019年10月
-
The 42st Annual Meeting of the Japan Neuroscience Society 2019年7月
-
The 41st Annual Meeting of the Japan Neuroscience Society 2018年7月
書籍等出版物
1共同研究・競争的資金等の研究課題
29-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月