研究者業績

水上 浩明

ミズカミ ヒロアキ  (Hiroaki Mizukami)

基本情報

所属
自治医科大学 分子病態治療研究センター 遺伝子治療研究部 教授
学位
医学博士(自治医科大学(JMU))
M.D.

J-GLOBAL ID
200901034663759310
researchmap会員ID
1000273320

外部リンク

学歴

 1

論文

 214
  • Ryota Watano, Kenji Ohba, Yoshihide Sehara, Yuka Hayashi, Yasushi Saga, Masashi Urabe, Tsukasa Ohmori, Hiroaki Mizukami
    Human gene therapy 36(11-12) 914-924 2025年6月  
    Gene therapy using adeno-associated virus (AAV) vectors is currently expanding to broad clinical applications. As the presence of a neutralizing antibody (NAb) against AAV capsids significantly restrains their efficacy, an accurate evaluation of NAb status is crucial for selecting appropriate candidates for gene therapy. Notably, cell-based NAb assays may not be sufficiently sensitive for detecting low-titer NAb, and few assays can evaluate multiple AAV serotypes using a commonly available cell. In this study, we developed a sensitive NAb assay against various AAV serotypes using commonly available HEK293 and Huh-7 cells. We found that adding glucose efficiently enhanced transgene expression across various AAV serotypes without causing cell damage. In addition, by combining a highly sensitive reporter gene, NanoLuc, the necessary dose of AAV vector was significantly reduced. The reduction of AAV dose resulted in the increased sensitivity of NAb detection as low as 100 vector genomes/cell. At the lower vector doses, sensitivity improvement was not observed regardless of serotypes, suggesting the limit of assay sensitivity of the cell-based NAb assay. These findings provide a highly sensitive methodology for assessing NAb titers and offer insights into conditions to attain maximal sensitivity in the cell-based NAb assay.
  • Takahiro Koyanagi, Yasushi Saga, Yoshifumi Takahashi, Kohei Tamura, Eri Suizu, Suzuyo Takahashi, Akiyo Taneichi, Yuji Takei, Hiroaki Mizukami, Hiroyuki Fujiwara
    Cancer reports (Hoboken, N.J.) 8(4) e70202 2025年4月  
    BACKGROUND: Progesterone rapidly induces ovarian cancer cell death through non-genomic actions mediated by the membrane progesterone receptor (mPR). AIMS: We investigated the combined effects of progesterone and SN38, an active metabolite of irinotecan, on ovarian cancer cells. METHODS AND RESULTS: mPR-positive and PR-negative ovarian cancer cell lines were utilized in experiments. Tumor cells were exposed to SN38 or cisplatin for 48 h following exposure to progesterone for 30 min. The viable cell counts were measured using a colorimetric assay and the expression of topoisomerase I (TOPO-I), the direct target of SN38, was observed with or without exposure to progesterone. Moreover, we investigated the relationship between several types of programmed cell death and the SN38 sensitivity enhancement effect of progesterone using specific cell death inhibitors. The chemosensitivity to SN38 was 8.7- to 26.0-fold higher with the administration of progesterone than that without (p < 0.01), but not to cisplatin in ovarian cancer cells. Progesterone suppressed the expression of TOPO-I mRNA by less than 50% (p < 0.01). Furthermore, among various programmed cell death inhibitors, only the ferroptosis inhibitor attenuated the progesterone-induced SN38 chemosensitivity enhancement effect. CONCLUSIONS: Progesterone increased sensitivity to SN38 by suppressing TOPO-I expression and inducing ferroptosis. The combination of progesterone and irinotecan could be a novel treatment modality for ovarian cancer.
  • Yasuyuki Osanai, Batpurev Battulga, Reiji Yamazaki, Kenta Kobayashi, Kenji Kobayashi, Yuka Nakamura, Masaki Ueno, Hiroaki Mizukami, Yumiko Yoshimura, Nobuhiko Ohno
    2025年3月6日  
    Myelination in the visual pathway is critical for transmitting visual information from retina to the brain. Reducing visual experience shortens myelin sheath length and slows the conduction velocity of the optic nerve. However, the mechanism underlying such experience-dependent myelination is unclear. Here, we found that closing both eyes, binocular deprivation (BD), during the juvenile period less affects the optic nerve myelination than monocular deprivation (MD) via GABA signaling. RNA-seq analysis of optic nerves from MD and BD mice revealed that GABAergic signaling is downregulated on the deprived side of MD compared to the intact side and BD. Inhibition of GABAergic signaling during the juvenile period resulted in myelin sheath shortening and excessive oligodendrocyte generation in normal mice, similar to the changes observed in MD mice. Enhancing GABAergic signaling rescued the myelin sheath shortening and excessive oligodendrocyte generation in the optic nerve of MD mice. Furthermore, we identified novel GABAergic neurons located within the optic nerve, whose neurites form belt-like presynaptic structures with the oligodendrocyte lineage cells, suggesting a potential source of the GABAergic inputs into oligodendrocytes. Our results indicate that the myelination of visual pathway is maintained by binocular visual inputs via intra-nerve GABA signaling.
  • Yenni Yusuf, Tatsuya Yoshii, Mitsuhiro Iyori, Kunitaka Yoshida, Hiroaki Mizukami, Shinya Fukumoto, Daisuke S Yamamoto, Asrar Alam, Talha Bin Emran, Fitri Amelia, Ashekul Islam, Hiromu Otsuka, Eizo Takashima, Takafumi Tsuboi, Shigeto Yoshida
    Frontiers in immunology 16 1592118-1592118 2025年  
    [This corrects the article DOI: 10.3389/fimmu.2019.00730.].
  • Yuki Kaneko, Hideyuki Ohzawa, Yuki Kimura, Rei Takahashi, Misaki Matsumiya, Kohei Tamura, Yurie Futoh, Hideyo Miyato, Shin Saito, Hironori Yamaguchi, Yoshinori Hosoya, Ryota Watano, Hiroaki Mizukami, Naohiro Sata, Joji Kitayama
    Cancer gene therapy 31(12) 1818-1830 2024年12月  
    This study explores a novel therapeutic approach for peritoneal metastasis (PM) using AAV-mediated delivery of tumor suppressor microRNA-29b (miR-29b) to peritoneal mesothelial cells (PMC). AAV serotypes 2 and DJ demonstrate high transduction efficiency for human and murine PMC, respectively. In vitro analysis indicates that AAV vectors encoding miR-29b precursor successfully elevate miR-29b expression in PMC and their secreted small extracellular vesicle (sEV), thereby inhibiting mesothelial mesenchymal transition and reducing subsequent attachment of tumor cells. A single intraperitoneal (IP) administration of AAV-DJ-miR-29b demonstrates robust and sustained transgene expression, suppressing peritoneal fibrosis and inhibiting the development of PM from gastric and pancreatic cancers. Additionally, AAV-DJ-miR-29b enhances the efficacy of IP chemotherapy using paclitaxel, restraining the growth of established PM. While conventional gene therapy for cancer encounters challenges targeting tumor cells directly but delivering miRNA to the tumor stroma offers a straightforward and efficient means of altering the microenvironment, leading to substantial inhibition of tumor growth. AAV-mediated miR-29b delivery to peritoneum via IP route presents a simple, minimally invasive, and promising therapeutic strategy for refractory PM.
  • Takahiro Koyanagi, Yasushi Saga, Yoshifumi Takahashi, Kohei Tamura, Suzuyo Takahashi, Akiyo Taneichi, Yuji Takei, Hiroaki Mizukami, Hiroyuki Fujiwara
    Cancer reports (Hoboken, N.J.) 7(12) e70100 2024年12月  
    BACKGROUND: Vasohibin-1 (VASH1), an angiogenic inhibitor, exhibits tubulin carboxypeptidase activity, which is involved in microtubule functions. Paclitaxel, the core chemotherapeutic agent for ovarian cancer chemotherapy, has a point of action on microtubules and may interact with VASH1. AIMS: To examine the influence of VASH1 on intracellular tubulin detyrosination status, cyclin B1 expression, and paclitaxel chemosensitivity using VASH1-overexpressing ovarian cancer cell lines. METHODS AND RESULTS: Gene-transfected human ovarian cancer cell lines were subjected to western blot analysis. Western blot analysis of VASH1-overexpressing ovarian cancer cells revealed upregulated expression of detyrosinated tubulin and cyclin B1 compared with control cells. By WST-1 assay, paclitaxel chemosensitivity of VASH1-overexpressing ovarian cancer cells was markedly enhanced compared with that of control cells, whereas there was no significant difference in chemosensitivity to cisplatin. The forced expression of VASH1 enhanced tubulin carboxypeptidase activity and increased cyclin B1 expression, resulting in augmented paclitaxel chemosensitivity in ovarian cancer cells. CONCLUSION: Ovarian cancer treatment strategies targeting VASH1 can potentiate the effects of conventional chemotherapy by inhibiting angiogenesis and regulating microtubule activity.
  • Yoshihide Sehara, Yuki Hashimotodani, Ryota Watano, Kenji Ohba, Ryosuke Uchibori, Kuniko Shimazaki, Kensuke Kawai, Hiroaki Mizukami
    Molecular Neurobiology 2024年11月  
    It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
  • Kartika Zainal, Ammar Hasyim, Yutaro Yamamoto, Tetsushi Mizuno, Yuna Sato, Sani Rasyid, Mamoru Niikura, Yu-ichi Abe, Mitsuhiro Iyori, Hiroaki Mizukami, Hisatoshi Shida, Shigeto Yoshida
    Vaccines 12(10) 1155-1155 2024年10月10日  
    Background/Objectives: We developed a multistage Plasmodium falciparum vaccine using a heterologous prime-boost immunization strategy. This involved priming with a highly attenuated, replication-competent vaccinia virus strain LC16m8Δ (m8Δ) and boosting with adeno-associated virus type 1 (AAV1). This approach demonstrated 100% efficacy in both protection and transmission-blocking in a murine model. In this study, we compared our LC16m8∆/AAV1 vaccine, which harbors a gene encoding Pfs25-PfCSP fusion protein, to RTS,S/AS01 (RTS,S) in terms of immune responses, protective efficacy, and transmission-blocking activity (TBA) in murine models. Methods: Mice were immunized following prime-boost vaccine regimens m8∆/AAV1 or RTS,S and challenged with transgenic Plasmodium berghei parasites. Immune responses were assessed via ELISA, and TB efficacy was evaluated using direct feeding assays. Results: m8∆/AAV1 provided complete protection (100%) in BALB/c mice and moderate (40%) protection in C57BL/6 mice, similar to RTS,S. Unlike RTS,S’s narrow focus (repeat region), m8∆/AAV1 triggered antibodies for all PfCSP regions (N-terminus, repeat, and C-terminus) with balanced Th1/Th2 ratios. Regarding transmission blockade, serum from m8∆/AAV1-vaccinated BALB/c mice achieved substantial transmission-reducing activity (TRA = 83.02%) and TB activity (TBA = 38.98%)—attributes not observed with RTS,S. Furthermore, m8∆/AAV1 demonstrated durable TB efficacy (94.31% TRA and 63.79% TBA) 100 days post-immunization. Conclusions: These results highlight m8∆/AAV1′s dual action in preventing sporozoite invasion and onward transmission, a significant advantage over RTS,S. Consequently, m8∆/AAV1 represents an alternative and a promising vaccine candidate that can enhance malaria control and elimination strategies.
  • Koji Nakano, Taketaro Sadahiro, Ryo Fujita, Mari Isomi, Yuto Abe, Yu Yamada, Tatsuya Akiyama, Seiichiro Honda, Brent A French, Hiroaki Mizukami, Masaki Ieda
    Stem cell reports 19(10) 1389-1398 2024年10月8日  
    Overexpression of cardiac reprogramming factors, including GATA4, HAND2, TBX5, and MEF2C (GHT/M), can directly reprogram cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs). Adeno-associated virus (AAV) vectors are widely used clinically, and vectors targeting cardiomyocytes (CMs) have been extensively studied. However, safe and efficient AAV vectors targeting CFs for in vivo cardiac reprogramming remain elusive. Therefore, we screened multiple AAV capsids and promoters to develop efficient and safe CF-targeting AAV vectors for in vivo cardiac reprogramming. AAV-DJ capsids containing periostin promoter (AAV-DJ-Postn) strongly and specifically expressed transgenes in resident CFs in mice after myocardial infarction (MI). Lineage tracing revealed that AAV-DJ-Postn vectors expressing GHT/M reprogrammed CFs into iCMs, which was further increased 2-fold using activated MEF2C via the fusion of the powerful MYOD transactivation domain (M-TAD) with GHT (AAV-DJ-Postn-GHT/M-TAD). AAV-DJ-Postn-GHT/M-TAD injection improved cardiac function and reduced fibrosis after MI. Overall, we developed new AAV vectors that target CFs for cardiac reprogramming.
  • Jun Noguchi, Satoshi Watanabe, Tomofumi Oga, Risa Isoda, Keiko Nakagaki, Kazuhisa Sakai, Kayo Sumida, Kohei Hoshino, Koichi Saito, Izuru Miyawaki, Eriko Sugano, Hiroshi Tomita, Hiroaki Mizukami, Akiya Watakabe, Tetsuo Yamamori, Noritaka Ichinohe
    Communications biology 7(1) 642-642 2024年5月27日  
    Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.
  • Yutaro Yamamoto, Camila Fabbri, Daiki Okuhara, Rina Takagi, Yuna Kawabata, Takuto Katayama, Mitsuhiro Iyori, Ammar A. Hasyim, Akihiko Sakamoto, Hiroaki Mizukami, Hisatoshi Shida, Stefanie Lopes, Shigeto Yoshida
    Frontiers in Immunology 15 2024年4月30日  
    Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and &amp;gt;95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25–PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed &amp;gt;75% TB activity and &amp;gt;95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.
  • Yuka Hayashi, Yoshihide Sehara, Ryota Watano, Kenji Ohba, Yuki Takayanagi, Yoshio Sakiyama, Kazuhiro Muramatsu, Hiroaki Mizukami
    Human Gene Therapy 2024年2月22日  
  • Toshimitsu Suzuki, Satoko Hattori, Hiroaki Mizukami, Ryuichi Nakajima, Yurina Hibi, Saho Kato, Mahoro Matsuzaki, Ryu Ikebe, Tsuyoshi Miyakawa, Kazuhiro Yamakawa
    Molecular Neurobiology 2024年2月  
  • Takahiro Koyanagi, Yasushi Saga, Yoshifumi Takahashi, Kohei Tamura, Takahiro Yoshiba, Suzuyo Takahashi, Akiyo Taneichi, Yuji Takei, Hiroaki Mizukami, Hiroyuki Fujiwara
    Cancer reports (Hoboken, N.J.) 7(1) e1934 2024年1月  
    BACKGROUND: Progesterone therapy is a relatively inexpensive treatment option for endometrial and breast cancers, with few side effects. Two signaling pathways usually mediate the physiological effects of progesterone, namely genomic and non-genomic actions. Genomic action occurs slowly via the nuclear progesterone receptor (PR), whereas the membrane progesterone receptor (mPR) induces rapid non-genomic action. AIMS: We investigated the effects of progesterone and various PR agonists on ovarian cancer cells. METHODS AND RESULTS: PR expression of six serous ovarian cancer cell lines was examined by western blotting, and mPR expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). PR-negative and mPR-positive ovarian cancer cells were exposed to progesterone and seven types of PR agonists (medroxyprogesterone acetate [MPA], dehydroepiandrosterone, dienogest, levonorgestrel, drospirenone, pregnenolone, and allopregnanolone) at 10-400 μM, and viable cell counts after exposure for 30 min were measured using the water-soluble tetrazolium (WST-1) assay. Ovarian cancer cell lines were exposed to 100 μM progesterone, and the expression of BAX, a pro-apoptotic protein, after 1-5 min was examined by western blotting. Western blotting detected no PR expression in the six serous ovarian cancer cell lines. In contrast, RT-qPCR detected mPR expression in all six serous ovarian cancer cell lines. Progesterone and MPA-induced cell death in all tested ovarian cancer cell lines in a concentration-dependent manner, whereas no effect was observed for other PR agonists. Western blotting revealed that pro-apoptotic protein BAX expression occurred 1 min after exposure to progesterone, suggesting that the cytocidal effects are mediated by rapid non-genomic action. CONCLUSION: Progesterone and MPA exhibited a rapid cytocidal effect on PR-negative ovarian cancer cells through non-genomic action. Progesterone and MPA could be novel adjuvant therapies for ovarian cancer.
  • Shizu Hidema, Keisuke Sato, Hiroaki Mizukami, Yumi Takahashi, Yuko Maejima, Kenju Shimomura, Katsuhiko Nishimori
    Neuroendocrinology 114(6) 517-537 2024年  
    INTRODUCTION: In nurturing systems, the oxytocin (Oxt)-oxytocin receptor (Oxtr) system is important for parturition, and essential for lactation and parental behavior. Among the nerve nuclei that express Oxtr, the lateral septal nucleus (LS) and medial preoptic area (MPOA) are representative regions that control maternal behavior. METHODS: We investigated the role of Oxtr- and Oxtr-expressing neurons, located in the LS and MPOA, in regulating maternal behavior by regulating Oxtr expression in a region-specific manner using recombinant mice and adeno-associated viruses. We quantified the prolactin (Prl) concentrations in the pituitary gland and plasma when Oxtr expression in the MPOA was reduced. RESULTS: The endogenous Oxtr gene in the neurons of the LS did not seem to play an essential role in maternal behavior. Conversely, decreased Oxtr expression in the MPOA increased the frequency of pups being left outside the nest and reduced their survival rate. Deletion of Oxtr in MPOA neurons prevented elevation of Prl levels in plasma and pituitary at postpartum day 2. DISCUSSION/CONCLUSION: Oxtr-expressing neurons in the MPOA are involved in the postpartum production of Prl. We confirmed the essential functions of Oxtr-expressing neurons and the Oxtr gene itself in the MPOA for the sustainability of maternal behavior, which involved Oxtr-dependent induction of Prl.
  • Kenji Ohba, Hiroaki Mizukami
    STAR Protocols 4(4) 102542-102542 2023年12月15日  査読有り招待有り
  • Yuka Hayashi, Yoshihide Sehara, Ryota Watano, Kenji Ohba, Yuki Takayanagi, Kazuhiro Muramatsu, Yoshio Sakiyama, Hiroaki Mizukami
    The Journal of Gene Medicine e3560 2023年12月  
    BACKGROUND: Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A) encoded by the GLA gene. The symptoms of FD occur as a result of the accumulation of globotriaosylceramide (Gb3), comprising a substrate of α-Gal A, in the organs. Adeno-associated virus (AAV)-mediated gene therapy is a promising treatment for FD. METHODS: α-Gal A knockout (GLAko) mice were injected intravenously with AAV2 (1 × 1011 viral genomes [vg]) or AAV9 (1 × 1011 or 2 × 1012 vg) vectors carrying human GLA (AAV-hGLA), and plasma, brain, heart, liver and kidney were tested for α-Gal A activity. The vector genome copy numbers (VGCNs) and Gb3 content in each organ were also examined. RESULTS: The plasma α-Gal A enzymatic activity was three-fold higher in the AAV9 2 × 1012 vg group than wild-type (WT) controls, which was maintained for up to 8 weeks after injection. In the AAV9 2 × 1012 vg group, the level of α-Gal A expression was high in the heart and liver, intermediate in the kidney, and low in the brain. VGCNs in the all organs of the AAV9 2 × 1012 vg group significantly increased compared to the phosphate-buffered-saline (PBS) group. Although Gb3 in the heart, liver and kidney of the AAV9 2 × 1012 vg was reduced compared to PBS group and AAV2 group, and the amount of Gb3 in the brain was not reduced. CONCLUSIONS: Systemic injection of AAV9-hGLA resulted in α-Gal A expression and Gb3 reduction in the organs of GLAko mice. To expect a higher expression of α-Gal A in the brain, the injection dosage, administration route and the timing of injection should be reconsidered.
  • Keitaro Obara, Teppei Ebina, Shin-Ichiro Terada, Takanori Uka, Misako Komatsu, Masafumi Takaji, Akiya Watakabe, Kenta Kobayashi, Yoshito Masamizu, Hiroaki Mizukami, Tetsuo Yamamori, Kiyoto Kasai, Masanori Matsuzaki
    Nature Communications 14(1) 2023年11月13日  
    Abstract Although cortical feedback signals are essential for modulating feedforward processing, no feedback error signal across hierarchical cortical areas has been reported. Here, we observed such a signal in the auditory cortex of awake common marmoset during an oddball paradigm to induce auditory duration mismatch negativity. Prediction errors to a deviant tone presentation were generated as offset calcium responses of layer 2/3 neurons in the rostral parabelt (RPB) of higher-order auditory cortex, while responses to non-deviant tones were strongly suppressed. Within several hundred milliseconds, the error signals propagated broadly into layer 1 of the primary auditory cortex (A1) and accumulated locally on top of incoming auditory signals. Blockade of RPB activity prevented deviance detection in A1. Optogenetic activation of RPB following tone presentation nonlinearly enhanced A1 tone response. Thus, the feedback error signal is critical for automatic detection of unpredicted stimuli in physiological auditory processing and may serve as backpropagation-like learning.
  • Kenta Fujimura, Tadayoshi Karasawa, Takanori Komada, Naoya Yamada, Yoshiko Mizushina, Chintogtokh Baatarjav, Takayoshi Matsumura, Kinya Otsu, Norihiko Takeda, Hiroaki Mizukami, Kazuomi Kario, Masafumi Takahashi
    Journal of molecular and cellular cardiology 180 58-68 2023年7月  
    Sepsis is a life-threatening syndrome, and its associated mortality is increased when cardiac dysfunction and damage (septic cardiomyopathy [SCM]) occur. Although inflammation is involved in the pathophysiology of SCM, the mechanism of how inflammation induces SCM in vivo has remained obscure. NLRP3 inflammasome is a critical component of the innate immune system that activates caspase-1 (Casp1) and causes the maturation of IL-1β and IL-18 as well as the processing of gasdermin D (GSDMD). Here, we investigated the role of the NLRP3 inflammasome in a murine model of lipopolysaccharide (LPS)-induced SCM. LPS injection induced cardiac dysfunction, damage, and lethality, which was significantly prevented in NLRP3-/- mice, compared to wild-type (WT) mice. LPS injection upregulated mRNA levels of inflammatory cytokines (Il6, Tnfa, and Ifng) in the heart, liver, and spleen of WT mice, and this upregulation was prevented in NLRP3-/- mice. LPS injection increased plasma levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α) in WT mice, and this increase was markedly inhibited in NLRP3-/- mice. LPS-induced SCM was also prevented in Casp1/11-/- mice, but not in Casp11mt, IL-1β-/-, IL-1α-/-, or GSDMD-/- mice. Notably, LPS-induced SCM was apparently prevented in IL-1β-/- mice transduced with adeno-associated virus vector expressing IL-18 binding protein (IL-18BP). Furthermore, splenectomy, irradiation, or macrophage depletion alleviated LPS-induced SCM. Our findings demonstrate that the cross-regulation of NLRP3 inflammasome-driven IL-1β and IL-18 contributes to the pathophysiology of SCM and provide new insights into the mechanism underlying the pathogenesis of SCM.
  • Akiya Watakabe, Henrik Skibbe, Ken Nakae, Hiroshi Abe, Noritaka Ichinohe, Muhammad Febrian Rachmadi, Jian Wang, Masafumi Takaji, Hiroaki Mizukami, Alexander Woodward, Rui Gong, Junichi Hata, David C Van Essen, Hideyuki Okano, Shin Ishii, Tetsuo Yamamori
    Neuron 111(14) 2258-2273 2023年5月9日  
    The prefrontal cortex (PFC) has dramatically expanded in primates, but its organization and interactions with other brain regions are only partially understood. We performed high-resolution connectomic mapping of the marmoset PFC and found two contrasting corticocortical and corticostriatal projection patterns: "patchy" projections that formed many columns of submillimeter scale in nearby and distant regions and "diffuse" projections that spread widely across the cortex and striatum. Parcellation-free analyses revealed representations of PFC gradients in these projections' local and global distribution patterns. We also demonstrated column-scale precision of reciprocal corticocortical connectivity, suggesting that PFC contains a mosaic of discrete columns. Diffuse projections showed considerable diversity in the laminar patterns of axonal spread. Altogether, these fine-grained analyses reveal important principles of local and long-distance PFC circuits in marmosets and provide insights into the functional organization of the primate brain.
  • Kenji Ohba, Yoshihide Sehara, Tatsuji Enoki, Junichi Mineno, Keiya Ozawa, Hiroaki Mizukami
    iScience 106487-106487 2023年3月  
  • Ken Yoshida, Kazuha Yokota, Kazuhisa Watanabe, Hidetoshi Tsuda, Ayumi Matsumoto, Hiroaki Mizukami, Sadahiko Iwamoto
    Scientific reports 13(1) 1843-1843 2023年2月1日  
    Our previous genome-wide association study to explore genetic loci associated with lean nonalcoholic fatty liver disease (NAFLD) in Japan suggested four candidate loci, which were mapped to chr6, chr7, chr12 and chr13. The present study aimed to identify the locus involved functionally in NAFLD around the association signal observed in chr13. Chromosome conformation capture assay and a database survey suggested the intermolecular interaction among DNA fragments in association signals with the adjacent four coding gene promoters. The four genes were further screened by knockdown (KD) in mice using shRNA delivered by an adeno-associated virus vector (AAV8), and KD of G protein-coupled receptor 180 (Gpr180) showed amelioration of hepatic lipid storage. Gpr180 knockout (KO) mice also showed ameliorated hepatic and plasma lipid levels without influencing glucose metabolism after high-fat diet intake. Transcriptome analyses showed downregulation of mTORC1 signaling and cholesterol homeostasis, which was confirmed by weakened phosphorylation of mTOR and decreased activated SREBP1 in Gpr180KO mice and a human hepatoma cell line (Huh7). AAV8-mediated hepatic rescue of GPR180 expression in KO mice showed recovery of plasma and hepatic lipid levels. In conclusion, ablation of GPR180 ameliorated plasma and hepatic lipid levels, which was mediated by downregulation of mTORC1 signaling.
  • Mitsuhiro Iyori, Andrew M. Blagborough, Tetsushi Mizuno, Yu-ichi Abe, Mio Nagaoka, Naoto Hori, Iroha Yamagoshi, Dari F. Da, William F. Gregory, Ammar A. Hasyim, Yutaro Yamamoto, Akihiko Sakamoto, Kunitaka Yoshida, Hiroaki Mizukami, Hisatoshi Shida, Shigeto Yoshida
    Frontiers in Immunology 13 1005476-1005476 2022年9月29日  査読有り
    The Malaria Vaccine Technology Roadmap 2013 (World Health Organization) aims to develop safe and effective vaccines by 2030 that will offer at least 75% protective efficacy against clinical malaria and reduce parasite transmission. Here, we demonstrate a highly effective multistage vaccine against both the pre-erythrocytic and sexual stages of Plasmodium falciparum that protects and reduces transmission in a murine model. The vaccine is based on a viral-vectored vaccine platform, comprising a highly-attenuated vaccinia virus strain, LC16m8Δ (m8Δ), a genetically stable variant of a licensed and highly effective Japanese smallpox vaccine LC16m8, and an adeno-associated virus (AAV), a viral vector for human gene therapy. The genes encoding P. falciparum circumsporozoite protein (PfCSP) and the ookinete protein P25 (Pfs25) are expressed as a Pfs25–PfCSP fusion protein, and the heterologous m8Δ-prime/AAV-boost immunization regimen in mice provided both 100% protection against PfCSP-transgenic P. berghei sporozoites and up to 100% transmission blocking efficacy, as determined by a direct membrane feeding assay using parasites from P. falciparum-positive, naturally-infected donors from endemic settings. Remarkably, the persistence of vaccine-induced immune responses were over 7 months and additionally provided complete protection against repeated parasite challenge in a murine model. We propose that application of the m8Δ/AAV malaria multistage vaccine platform has the potential to contribute to the landmark goals of the malaria vaccine technology roadmap, to achieve life-long sterile protection and high-level transmission blocking efficacy.
  • Yasuyuki Osanai, Batpurev Battulga, Reiji Yamazaki, Tom Kouki, Megumi Yatabe, Hiroaki Mizukami, Kenta Kobayashi, Yoshiaki Shinohara, Yumiko Yoshimura, Nobuhiko Ohno
    Neurochemical Research 2022年9月  
  • Ammar A. Hasyim, Mitsuhiro Iyori, Tetsushi Mizuno, Yu-ichi Abe, Iroha Yamagoshi, Yenni Yusuf, Intan Syafira, Akihiko Sakamoto, Yutaro Yamamoto, Hiroaki Mizukami, Hisatoshi Shida, Shigeto Yoshida
    Parasitology International 102652-102652 2022年8月  査読有り
  • Hiroshi Kameda, Naoyuki Murabe, Hiroaki Mizukami, Keiya Ozawa, Toshihiro Hayashi, Masaki Sakurai
    The Journal of comparative neurology 530(11) 1950-1965 2022年3月15日  
    Although corticospinal neurons are known to be distributed in both the primary motor and somatosensory cortices (S1), details of the projection pattern of their fibers to the lumbar cord gray matter remain largely uncharacterized, especially in rodents. We previously investigated the cortical area projecting to the gray matter of the fourth lumbar cord segment (L4) (L4 Cx) in mice. In the present study, we injected an anterograde tracer into multiple sites to cover the entire L4 Cx. We found that (1) the rostromedial part of the L4 Cx projects to the intermediate and ventral zones of the lumbar cord gray matter, (2) the lateral part projects to the medial dorsal horn, and (3) the caudal part projects to the lateral dorsal horn. We also found that the border between the rostromedial and caudolateral parts corresponds to the border between the agranular and granular cortex. Analysis of the somatotopic patterns formed by the cortical projection cells and the primary sensory neurons innervating the skin of the hindlimb and its related area suggests that the lateral part corresponds to the S1 hindlimb area and the caudal part to the S1 trunk area. Examination of thalamic innervation by the L4 Cx revealed that the caudolateral L4 Cx focally projects to the ventrobasal complex (VB) and the posterior complex (PO), while the medial L4 Cx widely projects to the PO but little to the VB. These findings suggest that the L4 Cx is parceled into subregions defined by the cytoarchitecture and subcortical projection.
  • Nemekhbayar Baatartsogt, Yuji Kashiwakura, Morisada Hayakawa, Nobuhiko Kamoshita, Takafumi Hiramoto, Hiroaki Mizukami, Tsukasa Ohmori
    Molecular Therapy - Methods &amp; Clinical Development 22 162-171 2021年9月  
  • Naoki Usui, Masahide Yoshida, Yuki Takayanagi, Naranbat Nasanbuyan, Ayumu Inutsuka, Hiroshi Kurosu, Hiroaki Mizukami, Yoshiyuki Mori, Makoto Kuro-O, Tatsushi Onaka
    Journal of neuroendocrinology e13026 2021年8月9日  
    Fibroblast growth factor 21 (FGF21) modulates energy metabolism and neuroendocrine stress responses. FGF21 synthesis is increased after environmental or metabolic challenges. Detailed roles of FGF21 in the control of behavioural disturbances under stressful conditions remain to be clarified. Here, we examined the roles of FGF21 in the control of behavioural changes after social defeat stress in male rodents. Central administration of FGF21 increased the number of tyrosine hydroxylase-positive catecholaminergic cells expressing c-Fos protein, an activity marker of neurones, in the nucleus tractus solitarius and area postrema. Double in situ hybridisation showed that some catecholaminergic neurones in the dorsal medulla oblongata expressed β-Klotho, an essential co-receptor for FGF21, in male mice. Social defeat stress increased FGF21 concentrations in the plasma of male mice. FGF21-deficient male mice showed social avoidance in a social avoidance test with C57BL/6J mice (background strain of FGF21-deficient mice) and augmented immobility behaviour in a forced swimming test after social defeat stress. On the other hand, overexpression of FGF21 by adeno-associated virus vectors did not significantly change behaviours either in wild-type male mice or FGF21-deficient male mice. The present data are consistent with the view that endogenous FGF21, possibly during the developmental period, has an inhibitory action on stress-induced depression-like behaviour in male rodents.
  • Yoshihide Sehara, Yuka Hayashi, Kenji Ohba, Ryosuke Uchibori, Masashi Urabe, Ayumu Inutsuka, Kuniko Shimazaki, Kensuke Kawai, Hiroaki Mizukami
    Human Gene Therapy 2021年8月5日  
  • Kameda Hiroshi, Murabe Naoyuki, Mizukami Hiroaki, Ozawa Keiya, Hayashi Toshihiro, Sakurai Masaki
    The Journal of Physiological Sciences 71(Suppl.1) 113-113 2021年8月  
  • Takahiro Koyanagi, Yasushi Saga, Yoshifumi Takahashi, Kohei Tamura, Takahiro Yoshiba, Suzuyo Takahashi, Akiyo Taneichi, Yuji Takei, Masashi Urabe, Hiroaki Mizukami, Hiroyuki Fujiwara
    Cancer medicine 10(8) 2732-2739 2021年4月  
    Vasohibin-1 (VASH1) is a VEGF-inducible endothelium-derived angiogenesis inhibitor, and vasohibin-2 (VASH2), its homolog, exhibits proangiogenic activity. VASH2 is expressed by various cancer cells and accelerates tumor angiogenesis and progression. VASH2 was recently shown to exhibit tubulin carboxypeptidase (TCP) activity related to microtubule functions. Paclitaxel (PTX), an effective chemotherapeutic agent that is widely used to treat ovarian cancer, inhibits microtubule depolymerization and may interact with VASH2. We herein established several VASH2 knockout ovarian cancer cell lines using the CRISPR/Cas9 genome editing system to examine the intracellular tubulin detyrosination status and PTX chemosensitivity. The knockout of VASH2 did not affect the proliferation or sphere-forming activity of ovarian cancer cells in vitro. A Western blot analysis of VASH2 knockout cells revealed the weak expression of detyrosinated tubulin and upregulated expression of cyclin B1. The knockout of VASH2 significantly increased chemosensitivity to PTX, but not to cisplatin in ovarian cancer cell lines. The knockout of VASH2 reduced TCP activity and increased cyclin B1 expression, resulting in increased PTX chemosensitivity in ovarian cancer cells. The inhibition of angiogenesis and regulation of microtubule activity may be achieved in ovarian cancer treatment strategies targeting VASH2.
  • Mohammad Shahnaij, Mitsuhiro Iyori, Hiroaki Mizukami, Mayu Kajino, Iroha Yamagoshi, Intan Syafira, Yenni Yusuf, Ken Fujiwara, Daisuke S Yamamoto, Hirotomo Kato, Nobuhiko Ohno, Shigeto Yoshida
    Frontiers in immunology 12 612910-612910 2021年  
    Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
  • Machi Horiai, Ayano Otsuka, Shizu Hidema, Yuichi Hiraoka, Ryotaro Hayashi, Shinji Miyazaki, Tamio Furuse, Hiroaki Mizukami, Ryoichi Teruyama, Masaru Tamura, Haruhiko Bito, Yuko Maejima, Kenju Shimomura, Katsuhiko Nishimori
    Scientific Reports 10(1) 2020年12月  
    <title>Abstract</title>Autism spectrum disorder (ASD) is a continuum of neurodevelopmental disorders and needs new therapeutic approaches. Recently, oxytocin (OXT) showed potential as the first anti-ASD drug. Many reports have described the efficacy of intranasal OXT therapy to improve the core symptoms of patients with ASD; however, the underlying neurobiological mechanism remains unknown. The OXT/oxytocin receptor (OXTR) system, through the lateral septum (LS), contributes to social behavior, which is disrupted in ASD. Therefore, we selectively express hM3Dq in OXTR-expressing (OXTR+) neurons in the LS to investigate this effect in ASD mouse models developed by environmental and genetic cues. In mice that received valproic acid (environmental cue), we demonstrated successful recovery of impaired social memory with three-chamber test after OXTR+ neuron activation in the LS. Application of a similar strategy to <italic>Nl3</italic><italic>R451C</italic> knock-in mice (genetic cue) also caused successful recovery of impaired social memory in single field test. OXTR+ neurons in the LS, which are activated by social stimuli, are projected to the CA1 region of the hippocampus. This study identified a candidate mechanism for improving core symptoms of ASD by artificial activation of DREADDs, as a simulation of OXT administration to activate OXTR+ neurons in the LS.
  • Akira Arafune-Mishima, Hiroshi Abe, Toshiki Tani, Hiromi Mashiko, Satoshi Watanabe, Kazuhisa Sakai, Wataru Suzuki, Hiroaki Mizukami, Akiya Watakabe, Tetsuo Yamamori, Noritaka Ichinohe
    Neuroscience 446 145-156 2020年10月15日  
    The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.
  • Ryota Watano, Tsukasa Ohmori, Shuji Hishikawa, Asuka Sakata, Hiroaki Mizukami
    Gene therapy 27(9) 427-434 2020年2月17日  査読有り
    Adeno-associated virus (AAV) vectors can transduce hepatocytes efficiently in vivo in various animal species, including humans. Few reports, however, have examined the utility of pigs in gene therapy. Pigs are potentially useful in preclinical studies because of their anatomical and physiological similarity to humans. Here, we evaluated the utility of microminipigs for liver-targeted gene therapy. These pigs were intravenously inoculated with an AAV8 vector encoding the luciferase gene, and gene expression was assessed by an in vivo imaging system. Robust transgene expression was observed almost exclusively in the liver, even though the pig showed a low-titer of neutralizing antibody (NAb) against the AAV8 capsid. We assessed the action of NAbs against AAV, which interfere with AAV vector-mediated gene transfer by intravascular delivery. When a standard dose of vector was administered intravenously, transgene expression was observed in both NAb-negative and low-titer (14×)-positive subjects, whereas gene expression was not observed in animals with higher titers (56×). These results are compatible with our previous observations using nonhuman primates, indicating that pigs are useful in gene therapy experiments, and that the role of low-titer NAb in intravenous administration of the AAV vector shows similarities across species.
  • Tomoaki M. Kato, Noriko Fujimori-Tonou, Hiroaki Mizukami, Keiya Ozawa, Shigeyoshi Fujisawa, Tadafumi Kato
    Scientific Reports 9(1) 2019年12月  
    <title>Abstract</title> The paraventricular thalamic nucleus (PVT) is a part of epithalamus and sends outputs to emotion-related brain areas such as the medial prefrontal cortex, nucleus accumbens, and amygdala. Various functional roles of the PVT in emotion-related behaviors are drawing attention. Here, we investigated the effect of manipulation of PVT neurons on the firing patterns of medial prefrontal cortical (mPFC) neurons and depression-like behavior. Extracellular single-unit recordings revealed that acute activation of PVT neurons by hM3Dq, an activation type of designer receptors exclusively activated by designer drugs (DREADDs), and administration of clozapine N-oxide (CNO) caused firing rate changes in mPFC neurons. Moreover, chronic presynaptic inhibition in PVT neurons by tetanus toxin (TeTX) increased the proportion of interneurons among firing neurons in mPFC and shortened the immobility time in the forced swimming test, whereas long-term activation of PVT neurons by hM3Dq caused recurrent hypoactivity episodes. These findings suggest that PVT neurons regulate the excitation/inhibition balance in the mPFC and mood stability.
  • Ebina T, Obara K, Watakabe A, Masamizu Y, Terada SI, Matoba R, Takaji M, Hatanaka N, Nambu A, Mizukami H, Yamamori T, Matsuzaki M
    Proceedings of the National Academy of Sciences of the United States of America 116(45) 22844-22850 2019年11月  査読有り
  • Miyata S, Tominaga K, Sakashita E, Urabe M, Onuki Y, Gomi A, Yamaguchi T, Mieno M, Mizukami H, Kume A, Ozawa K, Watanabe E, Kawai K, Endo H
    Scientific reports 9(1) 9787 2019年7月  査読有り
  • Kameda H, Murabe N, Odagaki K, Mizukami H, Ozawa K, Sakurai M
    The Journal of comparative neurology 527(8) 1401-1415 2019年6月  査読有り
  • Ryosuke Uchibori, Takeshi Teruya, Hiroyuki Ido, Ken Ohmine, Yoshihide Sehara, Masashi Urabe, Hiroaki Mizukami, Junichi Mineno, Keiya Ozawa
    Molecular therapy oncolytics 12 16-25 2019年3月29日  査読有り
    Adoptive transfer of T cells expressing a chimeric antigen receptor (CAR) is a promising cell-based anticancer therapy. Although clinical studies of this approach show therapeutic efficacy, additional genetic modification is necessary to enhance the efficacy and safety of CAR-T cells. For example, production of an antitumor cytokine from CAR-T cells can potentially enhance their tumor-killing activity, but there are concerns that constitutive expression of anticancer molecules will cause systemic side effects. Therefore, it is important that exogenous gene expression is confined to the tumor locality. Here, we aimed to develop an inducible promoter driven by activation signals from a CAR. Transgene expression in T cells transduced with the CD19-targeted CAR and an inducible promoter, including inducible reporter genes (CAR-T/iReporter), was only induced strongly by co-culture with CD19-positive target cells. CAR-T/iReporter cells also showed redirected cytolysis toward CD19-positive, but not CD19-negative, tumor cells. Overall, our study indicated that the inducible promoter was selectively driven by activation signals from the CAR, and transduction with the inducible promoter did not affect original effector activities including interleukin-2 and interferon-γ production and the antitumor activity of CAR-redirected cytotoxic T lymphocytes. Moreover, this inducible promoter permits visualization and quantification of the activation status in CAR-T cells.
  • Yoshiba T, Saga Y, Urabe M, Uchibori R, Matsubara S, Fujiwara H, Mizukami H
    Oncology letters 17(2) 2197-2206 2019年2月  査読有り
  • Kojima K, Nakajima T, Taga N, Miyauchi A, Kato M, Matsumoto A, Ikeda T, Nakamura K, Kubota T, Mizukami H, Ono S, Onuki Y, Sato T, Osaka H, Muramatsu SI, Yamagata T
    Brain : a journal of neurology 142(2) 322-333 2019年2月  査読有り
  • Yusuf Y, Yoshii T, Iyori M, Mizukami H, Fukumoto S, Yamamoto DS, Emran TB, Amelia F, Islam A, Syafira I, Yoshida S
    Frontiers in immunology 10 2412 2019年  査読有り
  • Skibbe H, Reisert M, Nakae K, Watakabe A, Hata J, Mizukami H, Okano H, Yamamori T, Ishii S
    IEEE transactions on medical imaging 38(1) 69-78 2019年1月  査読有り
  • Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S
    Frontiers in immunology 10 730-730 2019年  査読有り
  • Teppei Ebina, Yoshito Masamizu, Yasuhiro R. Tanaka, Akiya Watakabe, Reiko Hirakawa, Yuka Hirayama, Riichiro Hira, Shin-Ichiro Terada, Daisuke Koketsu, Kazuo Hikosaka, Hiroaki Mizukami, Atsushi Nambu, Erika Sasaki, Tetsuo Yamamori, Masanori Matsuzaki
    Nature Communications 9(1) 1879 2018年12月1日  査読有り
  • Jun Nakamura, Sachiko Watanabe, Hiroaki Kimura, Motoi Kobayashi, Tadayoshi Karasawa, Ryo Kamata, Fumitake Usui-Kawanishi, Ai Sadatomo, Hiroaki Mizukami, Noriko Nagi-Miura, Naohito Ohno, Tadashi Kasahara, Seiji Minota, Masafumi Takahashi
    Scientific Reports 8(1) 7601 2018年12月1日  査読有り
  • Yoshihide Sehara, Toshiki Inaba, Takao Urabe, Fumio Kurosaki, Masashi Urabe, Naoki Kaneko, Kuniko Shimazaki, Kensuke Kawai, Hiroaki Mizukami
    The European journal of neuroscience 48(12) 3466-3476 2018年12月  査読有り
    Survivin, a member of the inhibitors of apoptosis protein gene family, inhibits the activity of caspase, leading to a halt of the apoptotic process. Our study focused on the neuroprotective effect of survivin after transient middle cerebral artery occlusion (MCAO) with intraparenchymal administration of an adeno-associated virus (AAV) vector. His-tagged survivin was cloned and packaged into the AAV-rh10 vector. Four-week-old Sprague-Dawley rats were injected with 4 × 109  vg of AAV-GFP or AAV-His-survivin into the right striatum and were treated 3 weeks later with transient MCAO for 90 min. Twenty-four hours after MCAO, functional and histological analyses of the rats were performed. The result showed that rats that had been treated with AAV-green fluorescent protein (GFP) and those that had been treated with AAV-His-survivin did not show a significant difference in neurological scores 24 hr after MCAO, however, infarction volume was significantly reduced in the AAV-His-survivin group compared to that in the AAV-GFP group. Although the neutrophil marker myeloperoxidase did not show a significant difference in the ischemic boundary zone, cells positive for active caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling were significantly decreased in the AAV-His-survivin group. In conclusion, survivin overexpression in the ischemic boundary zone induced by using an AAV vector has the potential for amelioration of ischemic damage via an antiapoptotic mechanism.
  • Fumio Kurosaki, Ryosuke Uchibori, Yoshihide Sehara, Yasushi Saga, Masashi Urabe, Hiroaki Mizukami, Koichi Hagiwara, Akihiro Kume
    Human gene therapy 29(11) 1242-1251 2018年11月  査読有り
    Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder with limited therapeutic options. An aberrant wound healing process in response to repetitive lung injury has been suggested for its pathogenesis, and a number of cytokines including transforming growth factor β1 play pivotal roles in the induction and progression of fibrosis. Thus, the regulation of these pro-inflammatory conditions may reduce the progression of IPF and ameliorate its symptoms in patients. Interleukin-10 (IL-10), a pleiotropic cytokine, exerts anti-inflammatory and anti-fibrotic effects in numerous biological settings. In the present study, we investigated the preventive effects of IL-10 on bleomycin-induced pulmonary fibrosis in mice with the continuous expression of this cytokine via an adeno-associated virus serotype 6 vector. Mice were administered the adeno-associated virus serotype 6 vector encoding mouse IL-10 by intratracheal injection, and osmotic minipumps containing bleomycin were subcutaneously implanted seven days later. Lung histology and the expression levels of pro-inflammatory cytokines and fibrogenic cytokines were then analyzed. In mice exhibiting persistent IL-10 expression on day 35, the number of infiltrated inflammatory cells and the development of fibrosis in lung tissues were significantly reduced. Increases in transforming growth factor β1 and decreases in IFN-γ were also suppressed in treated animals, with changes in these cytokines playing important roles in the pathogenesis of pulmonary fibrosis. Furthermore, IL-10 significantly improved survival in bleomycin-induced mice. Our results provide insights into the potential benefit of the anti-fibrotic effects of IL-10 as a novel therapeutic approach for IPF.
  • Murabe N, Mori T, Fukuda S, Isoo N, Ohno T, Mizukami H, Ozawa K, Yoshimura Y, Sakurai M
    Scientific reports 8(1) 16536 2018年11月  査読有り

MISC

 188

書籍等出版物

 1

共同研究・競争的資金等の研究課題

 29

産業財産権

 2