医学部 薬理学講座

澤城 大悟

サワキ ダイゴ  (Daigo SAWAKI)

基本情報

所属
自治医科大学 地域医療学センター 地域医療学部門 講師

研究者番号
40456132
ORCID ID
 https://orcid.org/0000-0003-1417-2033
J-GLOBAL ID
202301010250577706
researchmap会員ID
R000058542

論文

 47
  • Shota Tomida, Tamaki Ishima, Daigo Sawaki, Yasushi Imai, Ryozo Nagai, Kenichi Aizawa
    International journal of molecular sciences 24(20) 2023年10月16日  
    Several genetic defects, including a mutation in myosin heavy chain 11 (Myh11), are reported to cause familial thoracic aortic aneurysm and dissection (FTAAD). We recently showed that mice lacking K1256 of Myh11 developed aortic dissection when stimulated with angiotensin II, despite the absence of major pathological phenotypic abnormalities prior to stimulation. In this study, we used a comprehensive, data-driven, unbiased, multi-omics approach to find underlying changes in transcription and metabolism that predispose the aorta to dissection in mice harboring the Myh11 K1256del mutation. Pathway analysis of transcriptomes showed that genes involved in membrane transport were downregulated in homozygous mutant (Myh11ΔK/ΔK) aortas. Furthermore, expanding the analysis with metabolomics showed that two mechanisms that raise the cytosolic Ca2+ concentration-multiple calcium channel expression and ADP-ribose synthesis-were attenuated in Myh11ΔK/ΔK aortas. We suggest that the impairment of the Ca2+ influx attenuates aortic contraction and that suboptimal contraction predisposes the aorta to dissection.
  • Daigo Sawaki, Yanyan Zhang, Amel Mohamadi, Maria Pini, Zaineb Mezdari, Larissa Lipskaia, Suzain Naushad, Lucille Lamendour, Dogus Murat Altintas, Marielle Breau, Hao Liang, Maissa Halfaoui, Thaïs Delmont, Mathieu Surenaud, Déborah Rousseau, Takehiko Yoshimitsu, Fawzia Louache, Serge Adnot, Corneliu Henegar, Philippe Gual, Gabor Czibik, Geneviève Derumeaux
    JCI insight 8(8) 2023年4月24日  
    Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
  • Gabor Czibik, Zaineb Mezdari, Dogus Murat Altintas, Juliette Bréhat, Maria Pini, Thomas d'Humières, Thaïs Delmont, Costin Radu, Marielle Breau, Hao Liang, Cecile Martel, Azania Abatan, Rizwan Sarwar, Ophélie Marion, Suzain Naushad, Yanyan Zhang, Maissa Halfaoui, Nadine Suffee, Didier Morin, Serge Adnot, Stéphane Hatem, Arash Yavari, Daigo Sawaki, Geneviève Derumeaux
    Circulation 144(7) 559-574 2021年8月17日  
    BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.
  • Maria Pini, Gabor Czibik, Daigo Sawaki, Zaineb Mezdari, Laura Braud, Thaïs Delmont, Raquel Mercedes, Cécile Martel, Nelly Buron, Geneviève Marcelin, Annie Borgne-Sanchez, Roberta Foresti, Roberto Motterlini, Corneliu Henegar, Geneviève Derumeaux
    Aging cell 20(8) e13421 2021年8月  
    In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high-fat diet (HFD, 1-10 weeks) in 5-month-old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence-associated ß-galactosidase activity and cyclin-dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD-derived preadipocytes, as compared with chow diet-derived preadipocytes. One-month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD-induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.
  • Nathalie Mougenot, Delphine Mika, Gabor Czibik, Elizabeth Marcos, Shariq Abid, Amal Houssaini, Benjamin Vallin, Aziz Guellich, Hind Mehel, Daigo Sawaki, Grégoire Vandecasteele, Rodolphe Fischmeister, Roger J Hajjar, Jean-Luc Dubois-Randé, Isabelle Limon, Serge Adnot, Geneviève Derumeaux, Larissa Lipskaia
    Cardiovascular research 115(12) 1778-1790 2019年10月1日  
    AIMS: Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of β-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS: Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/β a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/β phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION: Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/β phosphorylation.

MISC

 13

共同研究・競争的資金等の研究課題

 7