研究者業績

糟谷 豪

Go Kasuya

基本情報

所属
自治医科大学 医学部生理学講座 統合生理学部門 講師
学位
博士(理学)(東京大学)

研究者番号
80845115
ORCID ID
 https://orcid.org/0000-0003-1756-5764
J-GLOBAL ID
201901003448115571
researchmap会員ID
B000352971

外部リンク

委員歴

 1

論文

 16
  • Go Kasuya, Buntaro Zempo, Yasuhiro Yamamoto, Kaei Ryu, Fumihito Ono, Koichi Nakajo
    Communications Biology 2024年12月19日  査読有り筆頭著者責任著者
  • Daichi Yamanouchi, Go Kasuya, Koichi Nakajo, Yoshiaki Kise, Osamu Nureki
    Molecular Cell 2023年11月  査読有り筆頭著者責任著者
  • Jiaying Liu, Go Kasuya, Buntaro Zempo, Koichi Nakajo
    Frontiers in Physiology 13 2022年6月30日  査読有り
    The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
  • Tatsuya Hagino, Takafumi Kato, Go Kasuya, Kan Kobayashi, Tsukasa Kusakizako, Shin Hamamoto, Tomoaki Sobajima, Yuichiro Fujiwara, Keitaro Yamashita, Hisashi Kawasaki, Andrés D. Maturana, Tomohiro Nishizawa, Osamu Nureki
    Nature Communications 13(1) 2022年5月6日  査読有り
    Abstract In the light reaction of plant photosynthesis, modulation of electron transport chain reactions is important to maintain the efficiency of photosynthesis under a broad range of light intensities. VCCN1 was recently identified as a voltage-gated chloride channel residing in the thylakoid membrane, where it plays a key role in photoreaction tuning to avoid the generation of reactive oxygen species (ROS). Here, we present the cryo-EM structures of Malus domestica VCCN1 (MdVCCN1) in nanodiscs and detergent at 2.7 Å and 3.0 Å resolutions, respectively, and the structure-based electrophysiological analyses. VCCN1 structurally resembles its animal homolog, bestrophin, a Ca2+-gated anion channel. However, unlike bestrophin channels, VCCN1 lacks the Ca2+-binding motif but instead contains an N-terminal charged helix that is anchored to the lipid membrane through an additional amphipathic helix. Electrophysiological experiments demonstrate that these structural elements are essential for the channel activity, thus revealing the distinct activation mechanism of VCCN1.
  • Yoshiaki Kise, Go Kasuya, Hiroyuki H. Okamoto, Daichi Yamanouchi, Kan Kobayashi, Tsukasa Kusakizako, Tomohiro Nishizawa, Koichi Nakajo, Osamu Nureki
    Nature 599(7883) 158-164 2021年9月22日  査読有り筆頭著者責任著者
    <title>Abstract</title>Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary β-subunits—intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)—to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1–5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2–DPP6S–KChIP1 dodecamer complex, the Kv4.2–KChIP1 and Kv4.2–DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2–KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1–S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2–KChIP1–DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex.
  • Kazumasa Oda, Takashi Nomura, Takanori Nakane, Keitaro Yamashita, Keiichi Inoue, Shota Ito, Johannes Vierock, Kunio Hirata, Andrés D Maturana, Kota Katayama, Tatsuya Ikuta, Itsuki Ishigami, Tamaki Izume, Rie Umeda, Ryuun Eguma, Satomi Oishi, Go Kasuya, Takafumi Kato, Tsukasa Kusakizako, Wataru Shihoya, Hiroto Shimada, Tomoyuki Takatsuji, Mizuki Takemoto, Reiya Taniguchi, Atsuhiro Tomita, Ryoki Nakamura, Masahiro Fukuda, Hirotake Miyauchi, Yongchan Lee, Eriko Nango, Rie Tanaka, Tomoyuki Tanaka, Michihiro Sugahara, Tetsunari Kimura, Tatsuro Shimamura, Takaaki Fujiwara, Yasuaki Yamanaka, Shigeki Owada, Yasumasa Joti, Kensuke Tono, Ryuichiro Ishitani, Shigehiko Hayashi, Hideki Kandori, Peter Hegemann, So Iwata, Minoru Kubo, Tomohiro Nishizawa, Osamu Nureki
    eLife 10 2021年3月23日  査読有り
    Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore.
  • R. Nakamura, T. Numata, G. Kasuya, T. Yokoyama, T. Nishizawa, T. Kusakizako, T. Kato, T. Hagino, N. Dohmae, M. Inoue, K. Watanabe, H. Ichijo, M. Kikkawa, M. Shirouzu, T. J. Jentsch, R. Ishitani, Y. Okada, O. Nureki
    Commun Biol. 3(1) 2020年  査読有り筆頭著者責任著者
  • Kazuki Kato, Hiroshi Nishimasu, Daisuke Oikawa, Seiichi Hirano, Hisato Hirano, Go Kasuya, Ryuichiro Ishitani, Fuminori Tokunaga, Osamu Nureki
    Nature communications 9(1) 4424-4424 2018年10月24日  査読有り
    ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2'3'-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3'3'-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3'3'-cGAMP and the reaction intermediate pA(3',5')pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2'3'-cGAMP, but not 3'3'-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2'3'-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.
  • Go Kasuya, Takanori Nakane, Takeshi Yokoyama, Yanyan Jia, Masato Inoue, Kengo Watanabe, Ryoki Nakamura, Tomohiro Nishizawa, Tsukasa Kusakizako, Akihisa Tsutsumi, Haruaki Yanagisawa, Naoshi Dohmae, Motoyuki Hattori, Hidenori Ichijo, Zhiqiang Yan, Masahide Kikkawa, Mikako Shirouzu, Ryuichiro Ishitani, Osamu Nureki
    Nature Structural & Molecular Biology 25(9) 797-804 2018年9月  査読有り筆頭著者
  • Go Kasuya, Toshiaki Yamaura, Xiao-Bo Ma, Ryoki Nakamura, Mizuki Takemoto, Hiromitsu Nagumo, Eiichi Tanaka, Naoshi Dohmae, Takanori Nakane, Ye Yu, Ryuichiro Ishitani, Osamu Matsuzaki, Motoyuki Hattori, Osamu Nureki
    NATURE COMMUNICATIONS 8 2017年10月  査読有り筆頭著者
  • Go Kasuya, Yuichiro Fujiwara, Hisao Tsukamoto, Satoshi Morinaga, Satoshi Ryu, Kazushige Touhara, Ryuichiro Ishitani, Yuji Furutani, Motoyuki Hattori, Osamu Nureki
    Scientific Reports 7 2017年3月23日  査読有り筆頭著者
  • Go Kasuya, Masahiro Hiraizumi, Andres D. Maturana, Kaoru Kumazaki, Yuichiro Fujiwara, Keihong Liu, Yoshiko Nakada-Nakura, So Iwata, Keisuke Tsukada, Tomotaka Komori, Sotaro Uemura, Yuhei Goto, Takanori Nakane, Mizuki Takemoto, Hideaki E. Kato, Keitaro Yamashita, Miki Wada, Koichi Ito, Ryuichiro Ishitani, Motoyuki Hattori, Osamu Nureki
    CELL RESEARCH 26(12) 1288-1301 2016年12月  査読有り筆頭著者
  • Yuichi Minato, Shiho Suzuki, Tomoaki Hara, Yutaka Kofuku, Go Kasuya, Yuichiro Fujiwara, Shunsuke Igarashi, Ei-ichiro Suzuki, Osamu Nureki, Motoyuki Hattori, Takumi Ueda, Ichio Shimada
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 113(17) 4741-4746 2016年4月  査読有り
  • Go Kasuya, Yuichiro Fujiwara, Mizuki Takemoto, Naoshi Dohmae, Yoshiko Nakada-Nakura, Ryuichiro Ishitani, Motoyuki Hattori, Osamu Nureki
    CELL REPORTS 14(4) 932-944 2016年2月  査読有り筆頭著者
  • Tomohiro Nishizawa, Satomi Kita, Andrés D. Maturana, Noritaka Furuya, Kunio Hirata, Go Kasuya, Satoshi Ogasawara, Naoshi Dohmae, Takahiro Iwamoto, Ryuichiro Ishitani, Osamu Nureki
    Science 341(6142) 168-172 2013年  査読有り

MISC

 5
  • Koichi Nakajo, Go Kasuya
    Physiological Reports 12(6) 2024年3月19日  査読有り招待有り
    Abstract Voltage‐gated K+ (KV) and Ca2+‐activated K+ (KCa) channels are essential proteins for membrane repolarization in excitable cells. They also play important physiological roles in non‐excitable cells. Their diverse physiological functions are in part the result of their auxiliary subunits. Auxiliary subunits can alter the expression level, voltage dependence, activation/deactivation kinetics, and inactivation properties of the bound channel. KV and KCa channels are activated by membrane depolarization through the voltage‐sensing domain (VSD), so modulation of KV and KCa channels through the VSD is reasonable. Recent cryo‐EM structures of the KV or KCa channel complex with auxiliary subunits are shedding light on how these subunits bind to and modulate the VSD. In this review, we will discuss four examples of auxiliary subunits that bind directly to the VSD of KV or KCa channels: KCNQ1–KCNE3, Kv4‐DPP6, Slo1‐β4, and Slo1‐γ1. Interestingly, their binding sites are all different. We also present some examples of how functionally critical binding sites can be determined by introducing mutations. These structure‐guided approaches would be effective in understanding how VSD‐bound auxiliary subunits modulate ion channels.
  • Go Kasuya, Osamu Nureki
    Frontiers in Pharmacology 13 2022年5月11日  査読有り招待有り筆頭著者責任著者
    Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC), which is activated by cell swelling and releases chloride ions (Cl) or other osmolytes to counteract cell swelling. Although the LRRC8 protein family was identified as the molecular entity of VRAC only in 2014, due to recent advances in cryo-electron microscopy (cryo-EM), various LRRC8 structures, including homo-hexameric LRRC8A and LRRC8D structures, as well as inhibitor-bound and synthetic single-domain antibody-bound homo-hexameric LRRC8A structures, have been reported, thus extending our understanding of the molecular mechanisms of this protein family. In this review, we describe the important features of LRRC8 provided by these structures, particularly the overall architectures, and the suggested mechanisms underlying pore inhibition and allosteric modulation by targeting the intracellular leucine-rich repeat (LRR) domain.
  • 糟谷豪, 山浦利章, MA Xiao-Bo, 中村凌熙, 武本瑞貴, 南雲啓充, 田中英一, 堂前直, 中根崇智, YU Ye, 石谷隆一郎, 松崎修, 服部素之, 濡木理
    日本生化学会大会(Web) 90th 2017年  
  • Yuichiro Fujiwara, Go Kasuya, Motoyuki Hattori, Osamu Nureki
    Journal of Physiological Sciences 66(Supplement1) S66 2016年  査読有り

講演・口頭発表等

 6

担当経験のある科目(授業)

 2

共同研究・競争的資金等の研究課題

 7