基本情報
- 所属
- 自治医科大学 分子病態治療研究センター 循環病態・代謝学研究部 教授
- 学位
- 博士(工学)(大阪大学)
- 研究者番号
- 10570591
- J-GLOBAL ID
- 201601015803169501
- researchmap会員ID
- 7000018052
- 外部リンク
受賞
4-
2019年1月
-
2017年9月
-
2017年2月
論文
171-
日本癌学会総会記事 73回 P-3201 2014年9月
-
CANCER SCIENCE 105(5) 553-559 2014年5月 査読有りBone metastasis is a multistep process that includes cancer cell dissemination, colonization, and metastatic growth. Furthermore, this process involves complex, reciprocal interactions between cancer cells and the bone microenvironment. Bone resorption is known to be involved in both osteolytic and osteoblastic bone metastasis. However, the precise roles of the bone resorption in the multistep process of osteoblastic bone metastasis remain unidentified. In this study, we show that bone resorption plays important roles in cancer cell colonization during the initial stage of osteoblastic bone metastasis. We applied bioluminescence/X-ray computed tomography multimodal imaging that allows us to spatiotemporally analyze metastasized cancer cells and bone status in osteoblastic bone metastasis models. We found that treatment with receptor activator of factor-B ligand (RANKL) increased osteoblastic bone metastasis when given at the same time as intracardiac injection of cancer cells, but failed to increase metastasis when given 4days after cancer cell injection, suggesting that RANKL-induced bone resorption facilitates growth of cancer cells colonized in the bone. We show that insulin-like growth factor-1 released from the bone during bone resorption and hypoxia-inducible factor activity in cancer cells cooperatively promoted survival and proliferation of cancer cells in bone marrow. These results suggest a mechanism that bone resorption and hypoxic stress in the bone microenvironment cooperatively play an important role in establishing osteoblastic metastasis.
-
Cancer Science 105(5) 553-559 2014年 査読有りBone metastasis is a multistep process that includes cancer cell dissemination, colonization, and metastatic growth. Furthermore, this process involves complex, reciprocal interactions between cancer cells and the bone microenvironment. Bone resorption is known to be involved in both osteolytic and osteoblastic bone metastasis. However, the precise roles of the bone resorption in the multistep process of osteoblastic bone metastasis remain unidentified. In this study, we show that bone resorption plays important roles in cancer cell colonization during the initial stage of osteoblastic bone metastasis. We applied bioluminescence/X-ray computed tomography multimodal imaging that allows us to spatiotemporally analyze metastasized cancer cells and bone status in osteoblastic bone metastasis models. We found that treatment with receptor activator of factor-κB ligand (RANKL) increased osteoblastic bone metastasis when given at the same time as intracardiac injection of cancer cells, but failed to increase metastasis when given 4 days after cancer cell injection, suggesting that RANKL-induced bone resorption facilitates growth of cancer cells colonized in the bone. We show that insulin-like growth factor-1 released from the bone during bone resorption and hypoxia-inducible factor activity in cancer cells cooperatively promoted survival and proliferation of cancer cells in bone marrow. These results suggest a mechanism that bone resorption and hypoxic stress in the bone microenvironment cooperatively play an important role in establishing osteoblastic metastasis. © 2014 The Authors.
-
PloS one 9(8) e103397 2014年 査読有りPeptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.
-
日本癌学会総会記事 72回 364-364 2013年10月
-
日本癌学会総会記事 72回 453-453 2013年10月
-
Biochemical and biophysical research communications 433(1) 139-144 2013年3月 査読有り
-
MedChemComm 3(11) 1455-1461 2012年11月 査読有りNew YC-1 derivatives were synthesized and evaluated with HIF-1 transcriptional activity, and a potent derivative shows activity in vivo. Furthermore, for the mechanistic study of the YC-1 derivative, we evaluate the antiproliferative activity against 39 human cancer cell lines and the localization of active probes in cells. © The Royal Society of Chemistry.
-
日本癌学会総会記事 71回 389-389 2012年8月
-
日本癌学会総会記事 71回 529-530 2012年8月
-
血管医学 13(2) 129-136 2012年6月低酸素誘導因子(HIF)は、低酸素下で特異的に安定化し、低酸素適応応答遺伝子の発現を制御する転写因子である。固形腫瘍内に存在する低酸素微小環境は、長らく治療抵抗性の一端を担っていると考えられてきた。そして近年、HIFを中心とした多くの癌悪性化分子機構が明らかになり、HIFが新たな治療標的として注目されている。このことから、小動物腫瘍モデルにおけるHIFイメージングは新薬開発などにおいて重要な役割を担うことが期待されている。本稿では、細胞のHIFを介した低酸素適応応答と、固形腫瘍におけるHIF活性のin vivo光イメージングについて紹介したい。(著者抄録)
-
Blood 119(23) 5405-5416 2012年6月 査読有り
-
PloS one 6(11) e26640 2011年11月 査読有り
-
日本癌学会総会記事 70回 160-160 2011年9月
-
日本癌学会総会記事 70回 222-222 2011年9月
MISC
29-
CANCER SCIENCE 109 626-626 2018年12月
-
日本癌学会総会記事 77回 1696-1696 2018年9月
共同研究・競争的資金等の研究課題
10-
日本学術振興会 科学研究費助成事業 2023年6月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2021年7月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月