Researchers Database


    DepartomentofBiochemistryDivisionofFunctionalBiochemistry Assistant Professor
Last Updated :2021/12/04

Researcher Information

J-Global ID

Research Interests

  • スプライシング因子   RNA結合タンパク質   熱ショック   核スペックル   SRタンパク質   ATP合成酵素   

Research Areas

  • Life sciences / Medical biochemistry

Academic & Professional Experience

  • 2007 - Today  Jichi Medical UniversitySchool of Medicine講師

Published Papers

  • Mashiko T, Sakashita E, Kasashima K, Tominaga K, Kuroiwa K, Nozaki Y, Matsuura T, Hamamoto T, Endo H
    The Journal of biological chemistry 291 (29) 14996 - 15007 0021-9258 2016/07 [Refereed][Not invited]
  • Syuichi Tetsuka, Kaoru Tominaga, Eriko Ohta, Kenji Kuroiwa, Eiji Sakashita, Katsumi Kasashima, Toshiro Hamamoto, Michito Namekawa, Mitsuya Morita, Shinsuke Natsui, Tatsuo Morita, Keiko Tanaka, Yoshihisa Takiyama, Imaharu Nakano, Hitoshi Endo
    JOURNAL OF THE NEUROLOGICAL SCIENCES 335 (1-2) 48 - 57 0022-510X 2013/12 [Refereed][Not invited]
    Onconeural immunity, a cancer-stimulated immune reaction that cross-reacts with neural tissues, is considered to be the principal pathological mechanism for paraneoplastic neurological syndromes (PNS). A common PNS is paraneoplastic cerebellar degeneration (PCD). We had encountered a PCD patient with urothelial carcinomas (UC) of the urinary bladder who was negative for the well-characterized PNS-related onconeural antibodies. In the present study, we aimed to identify a new PCD-related onconeural antibody, capable of recognizing both cerebellar neurons and cancer tissues from the patient, and applied a proteomic approach using mass spectrometry. We identified anti-creatine kinase, brain-type (CKB) antibody as a new autoantibody in the serum and cerebrospinal fluid from the patient. Immunohistochemistry indicated that anti-CKB antibody reacted with both cerebellar neurons and UC of the urinary bladder tissues. However, anti-CKB antibody was not detected in sera from over 30 donors, including bladder cancer patients without PCD, indicating that anti-CKB antibody is required for onset of PCD. We also detected anti-CKB antibody in sera from three other PCD patients. Our study demonstrated that anti-CKB antibody may be added to the list of PCD-related autoantibodies and may be useful for diagnosis of PCD. (C) 2013 Elsevier B.V. All rights reserved.
  • Akimoto C, Sakashita E, Kasashima K, Kuroiwa K, Tominaga K, Hamamoto T, Endo H
    Biochimica et biophysica acta 1830 (3) 2728 - 2738 0006-3002 2013/03 [Refereed][Not invited]
    BACKGROUND: Upstream open reading frames (uORFs) are commonly found in the 5'-untranslated region (UTR) of many genes and function in translational control. However, little is known about the existence of the proteins encoded by uORFs, and the role of the proteins except translational control. There was no report about uORFs of the McKusick-Kaufman syndrome (MKKS) gene that causes a genetic disorder. METHODS: Northern blotting, 3'-RACE, and bioinformatics were used for determining the length of transcripts and their 3' ends. Luciferase assay and in vitro translation were used for evaluation of translational regulatory activity of uORFs. Immunoblotting and immunocytochemical analyses were used for detection of uORF-derived protein products and their subcellular localization. RESULTS: The MKKS gene generates two types of transcripts: a canonical long transcript that encodes both uORFs and MKKS, and a short transcript that encodes only uORFs by using alternative polyadenylation sites at the 5'-UTR. The simultaneous disruption of the uORF initiation codons increased the translation of the downstream ORF. Furthermore, both protein products from the two longest uORFs were detected in the mitochondrial membrane fraction of HeLa cells. Database searches indicated that such uORFs with active alternative polyadenylation sites at the 5'-UTR are atypical but surely exist in human transcripts. CONCLUSIONS: Multiple uORFs at the 5'-UTR of the MKKS long transcript function as translational repressor for MKKS. Two uORFs are translated in vivo and imported onto the mitochondrial membrane. GENERAL SIGNIFICANCE: Our findings provide unique insights into production of uORF-derived peptides and functions of uORFs.
  • Eiji Sakashita, Hitoshi Endo
    NUCLEUS-AUSTIN 1 (4) 367 - 380 1949-1034 2010/07 [Refereed][Not invited]
    Pre-mRNA splicing factors are often redistributed to nucleoli in response to physiological conditions and cell stimuli. In telophase nuclei, serine-arginine rich (SR) proteins, which usually reside in nuclear speckles, localize transiently to active ribosomal DNA (rDNA) transcription sites called nucleolar organizing region-associated patches (NAPs). Here, we show that ultraviolet light and DNA damaging chemicals induce the redistribution of SR and SR-related proteins to areas around nucleolar fibrillar components in interphase nuclei that are similar to, but distinct from, NAPs, and these areas have been termed DNA damage-induced NAPs (d-NAPs). In vivo labeling of nascent RNA distinguished d-NAPs from NAPs in that d-NAPs were observed even after full rDNA transcriptional arrest as a result of DNA damage. Studies under a variety of conditions revealed that d-NAP formation requires both RNA polymerase II-dependent transcriptional arrest and nucleolar segregation, in particular, the disorganization of the granular nucleolar components. Despite the redistribution of SR proteins, splicing factor-enriched nuclear speckles were not disrupted because other nuclear speckle components, such as nuclear poly(A) RNA and the U5-116K protein, remained in DNA-damaged cells. These data suggest that the selective redistribution of splicing factors contributes to the regulation of specific genes via RNA metabolism. Finally, we demonstrate that a change in alternative splicing of apoptosis-related genes is coordinated with the occurrence of d-NAPs. Our results reveal a novel response to DNA damage that involves the dynamic redistribution of splicing factors to nucleoli.
  • JH Trembley, S Tatsumi, E Sakashita, P Loyer, CA Slaughter, H Suzuki, H Endo, VJ Kidd, A Mayeda
    MOLECULAR AND CELLULAR BIOLOGY 25 (4) 1446 - 1457 0270-7306 2005/02 [Refereed][Not invited]
    Human RNPS1 was originally characterized as a pre-mRNA splicing activator in vitro and was shown to regulate alternative splicing in vivo. RNPS1 was also identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and a role for RNPS1 in postsplicing processes has been proposed. Here we demonstrate that RNPS1 incorporates into active spliceosomes, enhances the formation of the ATP-dependent A complex, and promotes the generation of both intermediate and final spliced products. RNPS1 is phosphorylated in vivo and interacts with the CK2 (casein kinase II) protein kinase. Serine 53 (Ser-53) of RNPS1 was identified as the major phosphorylation site for CK2 in vitro, and the same site is also phosphorylated in vivo. The phosphorylation status of Ser-53 significantly affects splicing activation in vitro, but it does not perturb the nuclear localization of RNPS1. In vivo experiments indicated that the phosphorylation of RNPS1 at Ser-53 influences the efficiencies of both splicing and translation. We propose that RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 phosphorylation.
  • E Sakashita, S Tatsumi, D Werner, H Endo, A Mayeda
    MOLECULAR AND CELLULAR BIOLOGY 24 (3) 1174 - 1187 0270-7306 2004/02 [Refereed][Not invited]
    Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2beta (hTra2beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
  • K Kasashima, E Sakashita, K Saito, H Sakamoto
    NUCLEIC ACIDS RESEARCH 30 (20) 4519 - 4526 0305-1048 2002/10 [Refereed][Not invited]
    Hu proteins are RNA-binding proteins that are the vertebrate homologs of Drosophila ELAV, and are implicated in stabilization or enhanced translation of specific mRNAs with AU-rich elements (AREs) in the 3'-untranslated region. Here, using the yeast two-hybrid system, we show that neuron-specific Hu proteins can interact with themselves. Immuno precipitation assays demonstrated that the interaction between Hu proteins occurs in mammalian cells and is strongly enhanced in the presence of cellular RNA. Furthermore, using in situ chemical crosslinking assays, we found that HuD, one of the neuron-specific Hu proteins, multimerizes in cells. The crosslinked HuD multimers retain specific RNA-binding ability and can interact with additional Hu proteins. Consistent with this biochemical property, HuD showed granular distribution in two neurogenic cell lines. These results suggest that the RNA-bound form of HuD multimerizes cooperatively to form a specific granular structure that may serve as a site of post-transcriptional regulation of ARE-containing mRNAs.
  • H Tamada, E Sakashita, K Shimazaki, E Ueno, T Hamamoto, Y Kagawa, H Endo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 297 (1) 96 - 104 0006-291X 2002/09 [Refereed][Not invited]
    Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53 kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatio-temporal control. (C) 2002 Elsevier Science (USA). All rights reserved.
  • M Hayakawa, E Sakashita, E Ueno, S Tominaga, T Hamamoto, Y Kagawa, H Endo
    JOURNAL OF BIOLOGICAL CHEMISTRY 277 (9) 6974 - 6984 0021-9258 2002/03 [Refereed][Not invited]
    Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chent. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'- AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.

Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.