Researchers Database

yamazaki reiji

    HistologyandcellBiology Research Associate
Contact: ryamazakijichi.ac.jp
Last Updated :2021/12/07

Researcher Information

Research funding number

  • 00870718

J-Global ID

Research Interests

  • 脳卒中   末梢神経障害   グリア   シュワン細胞   multiple sclerosis   white matter   demyelinating disease   myelin   Oligodendrocyte   

Research Areas

  • Life sciences / Neuroanatomy and physiology
  • Life sciences / Neuroscience - general

Academic & Professional Experience

  • 2020/02 - Today  Jichi Medical UniversitySchool of Medicine助教
  • 2017/10 - 2020/01  Georgetown UniversityDepartment of BiologyPostdoctoral fellow
  • 2017/04 - 2017/10  日本学術振興会 特別研究員PD
  • 2016/04 - 2017/03  日本学術振興会 特別研究員DC2

Education

  • 2013/04 - 2017/03  Tokyo University of Pharmacy and Life Sciences  薬学研究科  薬学専攻
  • 2007/04 - 2013/03  Tokyo University of Pharmacy and Life Sciences  School of Pharmacy  School of Pharmacy

Association Memberships

  • Japan Society of Hitochemistry and Cytochemistry   The Japanese Association of Anatomists   Society for Neuroscience   International society for neurochemistry   THE JAPANESE SOCIETY FOR NEUROCHEMISTRY   

Published Papers

  • Reiji Yamazaki, Yasuyuki Osanai, Tom Kouki, Yoshiaki Shinohara, Jeffrey K Huang, Nobuhiko Ohno
    Scientific reports 11 (1) 16906 - 16906 2021/08 
    Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed. However, it remained unknown whether NR can be used to label demyelinated lesions in PNS. In this study, we generated LPC-induced demyelination in sciatic nerve of mice, and demonstrated that the demyelinated lesions at the site of LPC injection were readily detectable at 7 days postlesion (dpl) by macroscopic observation of NR labeling. Moreover, NR staining gradually decreased from 7 to 21 dpl over the course of remyelination. Electron microscopy analysis of NR-labeled sciatic nerves at 7 dpl confirmed demyelination and myelin debris in lesions. Furthermore, fluorescence microscopy showed NR co-labeling with activated macrophages and Schwann cells in the PNS lesions. Together, NR labeling is a straightforward method that allows the macroscopic detection of demyelinated lesions in sciatic nerves after LPC injection.
  • Takeshi Inagaki, Ken Fujiwara, Yoshiaki Shinohara, Morio Azuma, Reiji Yamazaki, Kiyomi Mashima, Atsushi Sakamoto, Takashi Yashiro, Nobuhiko Ohno
    Histochemistry and cell biology 155 (4) 503 - 512 2021/01 
    Hypertension leads to structural remodeling of cerebral blood vessels, which has been implicated in the pathophysiology of cerebrovascular diseases. The remodeling and progression of arteriolosclerosis under hypertension involve fibrosis along with the production of type I collagen around cerebral arterioles. However, the source and regulatory mechanisms of this collagen production remain elusive. In this study, we examined if perivascular macrophages (PVMs) are involved in collagen production around cerebral small vessels in hypertensive SHRSP/Izm rats. Immunoreactivity for type I collagen around cerebral small vessels in 12-week-old hypertensive rats tended to higher than those in 4-week-old hypertensive and 12-week-old control rats. In ultrastructural analyses using transmission electron microscopy, the substantial deposition of collagen fibers could be observed in the intercellular spaces around PVMs near the arterioles of rats with prolonged hypertension. In situ hybridization analyses revealed that cells positive for mRNA of Col1a1, which comprises type I collagen, were observed near cerebral small vessels. The Col1a1-positive cells around cerebral small vessels were colocalized with immunoreactivity for CD206, a marker for PVMs, but not with those for glial fibrillary acidic protein or desmin, markers for other perivascular cells such as astrocytes and vascular smooth muscle cells. These results demonstrated that enhanced production of type I collagen is observed around cerebral small vessels in rats with prolonged hypertension and Col1a1 is expressed by PVMs, and support the concept that PVMs are involved in collagen production and vascular fibrosis under hypertensive conditions.
  • Reiji Yamazaki, Nobuhiko Ohno, Jeffrey K Huang
    Journal of neurochemistry 0022-3042 2020/08 [Refereed][Not invited]
     
    Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by accumulated motor disability. However, whether remyelination promotes motor recovery following demyelinating injury remains unclear. Damage to the internal capsule (IC) is known to result in motor impairment in multiple sclerosis and stroke. Here, we induced focal IC demyelination in mice by lysophosphatidylcholine (LPC) injection, and examined its effect on motor behavior. We also compared the effect of LPC-induced IC damage to that produced by endothelin-1 (ET1), a potent vasoconstrictor used in experimental stroke lesions. We found that LPC or ET1 injections induced asymmetric motor deficit at 7 days post-lesion (dpl), and that both lesion types displayed increased microglia/macrophage density, myelin loss, and axonal dystrophy. The motor deficit and lesion pathology remained in ET1-injected mice at 28 dpl. In contrast, LPC-injected mice regained motor function by 28 dpl, with corresponding reduction in activated microglia/macrophage density, and recovery of myelin staining and axonal integrity in lesions. These results suggest that LPC-induced IC demyelination results in acute motor deficit and subsequent recovery through remyelination, and may be used to complement future drug screens to identify drugs for promoting remyelination.
  • Melina Paula Bordone, Mootaz M Salman, Haley E Titus, Elham Amini, Jens V Andersen, Barnali Chakraborti, Artem V Diuba, Tatsiana G Dubouskaya, Eric Ehrke, Andiara Espindola de Freitas, Guilherme Braga de Freitas, Rafaella A Gonçalves, Deepali Gupta, Richa Gupta, Sharon R Ha, Isabel A Hemming, Minal Jaggar, Emil Jakobsen, Punita Kumari, Navya Lakkappa, Ashley P L Marsh, Jessica Mitlöhner, Yuki Ogawa, Ramesh Kumar Paidi, Felipe C Ribeiro, Ahmad Salamian, Suraiya Saleem, Sorabh Sharma, Joana M Silva, Shripriya Singh, Kunjbihari Sulakhiya, Tesfaye Wolde Tefera, Behnam Vafadari, Anuradha Yadav, Reiji Yamazaki, Constanze I Seidenbecher
    Journal of neurochemistry 151 (2) 139 - 165 2019/10 [Refereed][Not invited]
     
    The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
  • Lauren Rosko, Victoria N Smith, Reiji Yamazaki, Jeffrey K Huang
    The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 25 (4) 334 - 343 2019/08 [Refereed][Not invited]
     
    The human brain weighs approximately 2% of the body; however, it consumes about 20% of a person's total energy intake. Cellular bioenergetics in the central nervous system involves a delicate balance between biochemical processes engaged in energy conversion and those responsible for respiration. Neurons have high energy demands, which rely on metabolic coupling with glia, such as with oligodendrocytes and astrocytes. It has been well established that astrocytes recycle and transport glutamine to neurons to make the essential neurotransmitters, glutamate and GABA, as well as shuttle lactate to support energy synthesis in neurons. However, the metabolic role of oligodendrocytes in the central nervous system is less clear. In this review, we discuss the energetic demands of oligodendrocytes in their survival and maturation, the impact of altered oligodendrocyte energetics on disease pathology, and the role of energetic metabolites, taurine, creatine, N-acetylaspartate, and biotin, in regulating oligodendrocyte function.
  • Maryna Baydyuk, David S Cha, Jingwen Hu, Reiji Yamazaki, Evan M Miller, Victoria N Smith, Katherine A Kelly, Jeffrey K Huang
    Proceedings of the National Academy of Sciences of the United States of America 116 (28) 14290 - 14299 2019/07 [Refereed][Not invited]
     
    Animal models of central nervous system (CNS) demyelination, including toxin-induced focal demyelination and immune-mediated demyelination through experimental autoimmune encephalomyelitis (EAE), have provided valuable insights into the mechanisms of neuroinflammation and CNS remyelination. However, the ability to track changes in transcripts, proteins, and metabolites, as well as cellular populations during the evolution of a focal lesion, has remained challenging. Here, we developed a method to label CNS demyelinating lesions by the intraperitoneal injection of a vital dye, neutral red (NR), into mice before killing. We demonstrate that NR-labeled lesions can be easily identified on the intact spinal cord in both lysolecithin- and EAE-mediated demyelination models. Using fluorescence microscopy, we detected NR in activated macrophages/microglia and astrocytes, but not in oligodendrocytes present in lesions. Importantly, we successfully performed RT-qPCR, Western blot, flow cytometry, and mass spectrometry analysis of precisely dissected NR-labeled lesions at 5, 10, and 20 d postlesion (dpl) and found differential changes in transcripts, proteins, cell populations, and metabolites in lesions over the course of remyelination. Therefore, NR administration is a simple and powerful method to track and analyze the detailed molecular, cellular, and metabolic changes that occur within the lesion microenvironment over time following CNS injury. Furthermore, this method can be used to identify molecular and metabolic pathways that regulate neuroinflammation and remyelination and facilitate the development of therapies to promote repair in demyelinating disorders such as multiple sclerosis.
  • Reiji Yamazaki, Hiroko Baba, Yoshihide Yamaguchi
    Neurochemical research 43 (1) 195 - 204 2018/01 [Refereed][Not invited]
     
    Myelin, which is a multilamellar structure that sheathes the axon, is essential for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes (OLs), which wrap their plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we reported that myosin ID (Myo1d) is distributed in rat CNS myelin and is especially enriched in the outer and inner cytoplasm-containing loops. Further, small interfering RNA (siRNA) treatment highlighted the involvement of Myo1d in the formation and maintenance of myelin in cultured OLs. Myo1d is one of the unconventional myosins, which may contribute to membrane dynamics, either in the wrapping process or transport of myelin membrane proteins during myelination. However, the function of Myo1d in myelin formation in vivo remains unclear. In the current study, to clarify the function of Myo1d in vivo, we surgically injected siRNA in the corpus callosum of a cuprizone-treated demyelination mouse model via stereotaxy. Knockdown of Myo1d expression in vivo decreased the intensities of myelin basic protein and myelin proteolipid protein immunofluorescence staining. However, neural/glial antigen 2-positive signals and adenomatous polyposis coli (APC/CC1)-positive cell numbers were unchanged by siRNA treatment. Furthermore, Myo1d knockdown treatment increased pro-inflammatory microglia and astrocytes during remyelination. In contrast, anti-inflammatory microglia were decreased. The percentage of caspase 3-positive cells in total CC1-positive OLs were also increased by Myo1d knockdown. These results indicated that Myo1d plays an important role during the regeneration process after demyelination.
  • Reiji Yamazaki, Tomoko Ishibashi, Hiroko Baba, Yoshihide Yamaguchi
    Neurochemical research 42 (12) 3372 - 3381 0364-3190 2017/12 [Refereed][Not invited]
     
    Myelin is a specialized multilamellar structure involved in various functions of the nervous system. Oligodendrocytes are responsible for myelin formation in the central nervous system. Motor proteins play important roles in differentiation and myelin formation of the oligodendrocyte lineage. Recently, we revealed that one of the unconventional myosins, myosin ID (Myo1d), is expressed in mature oligodendrocytes and is required for myelin-like membrane formation in vitro. Previously, Cahoy et al. (J Neurosci 28:264-278, 2008) reported that another unconventional myosin VI (Myo6) is upregulated in transcriptome data of differentiated oligodendrocytes. However, it is uncertain whether Myo6 protein is present in oligodendrocytes. In this study, to analyze expression of Myo6 in oligodendrocytes, we performed immunofluorescence analysis on brains of adult normal and cuprizone-induced demyelination mice. Myo6 expression was detected in mature oligodendrocytes and oligodendrocyte progenitor cells in the cerebellum and corpus callosum. To compare temporal expression patterns of myosin superfamily members in vitro, double immunostainings using anti-Myo6, myosin Va (Myo5a), or Myo1d with each stage-specific oligodendrocyte marker antibody were performed. In cultured oligodendrocytes, although Myo1d was found only in mature oligodendrocytes, Myo6 and Myo5a signals were detected in all stages of differentiation, from oligodendrocyte progenitor cells to mature oligodendrocytes. Additionally, similar to Myo5a, Myo6-positive signals were confined to the cell body and processes. These results showed that Myo6 is one of the unconventional myosins in oligodendrocyte lineage cells, which could play a role in clathrin-related endocytosis.
  • Reiji Yamazaki, Tomoko Ishibashi, Hiroko Baba, Yoshihide Yamaguchi
    ASN neuro 8 (5) 2016/10 [Refereed][Not invited]
     
    Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2',3'-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin.
  • Reiji Yamazaki, Tomoko Ishibashi, Hiroko Baba, Yoshihide Yamaguchi
    Journal of neuroscience research 92 (10) 1286 - 94 0360-4012 2014/10 [Refereed][Not invited]
     
    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin.

Conference Activities & Talks

  • 多発性硬化症に対する新たな薬剤評価法の開発
    山崎礼二, ジェフリーハング, 大野伸彦
    第53回日本臨床分子形態学会総会・学術集会  2021/10
  • 脳細動脈硬化における血管線維化と脳血管周囲マクロファージの関連
    稲垣 健志, 山崎 礼二, 長内 康幸, 篠原 良章, 坂本 敦司, 大野 伸彦
    第53回日本臨床分子形態学会総会・学術集会  2021/10
  • ニュートラルレッド色素によるマウス末梢神経系脱髄部位の肉眼的検出
    山崎礼二, 長内康幸, 幸喜富, 篠原良章, 大野伸彦
    第 64 回日本神経化学会大会  2021/09
  • 単眼の視覚欠如と両眼の視覚欠如が髄鞘形成に与える影響の解析
    長内 康幸, バッツルガ バツプレブ, 山崎 礼二, 山本 真理子, 幸喜 富, 矢田部 恵, 水上 浩明, 上野 将紀, 小林 憲太, 吉村 由美子, 篠原 良章, 大野 伸彦
    第 64 回日本神経化学会大会  2021/09
  • 視覚伝導路における神経活動に依存した髄鞘形成機構の解明
    長内 康幸, バッツルガ バツプレブ, 山崎 礼二, 山本 真理子, 幸喜 富, 矢田部 恵, 水上 浩明, 上野 将紀, 小林 憲太, 吉村 由美子, 篠原 良章, 大野 伸彦
    第62回日本組織細胞化学会総会・学術集会  2021/09
  • マウス内包脱髄後の急性運動機能障害と再髄鞘化に伴う機能回復  [Not invited]
    山崎礼二, Jeffrey Huang, 大野伸彦
    第126回日本解剖学会総会・全国学術集会, 第98回日本生理学会大会  2021/03
  • 末梢神経系脱髄に対する新たな病変部位標識法の開発  [Not invited]
    山崎礼二, 長内康幸, 幸喜富, 篠原良章, 大野伸彦
    第61回日本組織細胞化学会総会・学術集会  2020/11
  • 新規内包脱髄マウスモデルの開発  [Not invited]
    山崎礼二, Jeffrey Huang, 大野伸彦
    日本解剖学会第108回関東支部学術集会  2020/10
  • 運動機能回復を基盤とする新規脱髄マウスモデルの開発  [Not invited]
    山崎礼二, Jeffrey Huang, 大野伸彦
    第 63 回日本神経化学会大会  2020/09
  • Presentation of acute motor deficit and subsequent recovery following internal capsule demyelination in mice
    Yamazaki R, Jeffrey Huang
    27th Biennial Meeting of the International Society for Neurochemistry  2019/08
  • 内包へのリゾレシチン投与による新規内包脱髄モデルマウスの作製
    山崎礼二、Jeffrey Huang
    第42回日本神経科学会,第62回日本神経化学会合同大会(Neuro2019)  2019/07
  • Unconventinal myosin ID has important role in oligodendrocyte during remyelination.
    山崎礼二, 山口宜秀, 石橋智子, 馬場広子
    第60回日本神経化学会年会  2017/09
  • Unconventional myosin ID is involved in remyelination after cuprizone-induced Demyelination
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    26th Biennial Meeting of the International Society for Neurochemistry  2017/08
  • Analysis of Unconventional Myosin VI Expressed in Oligodendrocyte.
    山崎礼二, 山口宜秀, 石橋智子, 馬場広子
    第59回日本神経化学会, 第38回日本生物学的精神医学会合同大会  2016/09
  • オリゴデンドロサイトにおける Myosin Superfamilyの異なった局在と発現
    山崎礼二, 山口宜秀, 石橋智子, 馬場広子
    第58回日本神経化学会、第36回日本生物学的精神医学会合同大会  2015/09
  • Differential expression and distribution of myosin superfamily in cultured oligodendrocyte.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    12th Biennial ISN Satellite Meeting on Myelin Biology  2015/08
  • Analysis of myosin superfamily in mature cultured oligodendrocytes and in cuprizone-treated de- and remyelination model mice.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    25th Biennial Meeting of the International Society for Neurochemistry-13th Asian Pacific Society for Neurochemistry joint meeting  2015/08
  • Knockdown of Myosin ID expression induced morphological change in oligodendrocytes.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    44th Annual Meeting of the Society for Neuroscience  2014/11
  • Myosin IDはオリゴデンドロサイトのミエリン形成に重要な役割をしている
    山崎礼二, 山口宜秀, 石橋智子, 馬場広子
    第57回日本神経化学会年会  2014/09
  • Expression of Unconventional myosin 1D in CNS myelin.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    24th Biennial Meeting of the International Society for Neurochemistry-American Society for Neurochemistry joint meeting  2013/04
  • Developmental expression of myosin 1D in rat brain white matter.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H
    11th Biennial Meeting of the Asian Pacific Society for Neurochemistry-the 55th Annual Meeting of the Japanese Society for Neurochemistry  2012/10

MISC

  • ボリューム電子顕微鏡イメージングにおける組織細胞化学の特徴
    大野伸彦, 齊藤百合花, 長内康幸, 山崎礼二, 篠原良章  組織細胞化学 2021  163  -174  2021/08
  • 鍋島トラベルアワードを受賞して
    山崎礼二  神経化学  58(2)-  104  2019/12  [Not refereed][Invited]
  • Presentation of acute motor deficit and subsequent recovery following internal capsule demyelination in mice
    Reiji yamazaki, Jeffrey Huang  Journal of Neurochemistry  150-  (146)  MTU11-27  2019/08
  • ジョージタウン大学への研究留学
    山崎礼二  先進医薬年報  No.20-  46  -47  2019/08  [Not refereed][Invited]
  • オシャレなジョージタウンでの研究生活
    山崎礼二  神経化学  58(1)-  40  -44  2019/06  [Not refereed][Invited]
  • 14th ISN advanced school of neurochemistry に参加して
    山崎礼二  神経化学  57-  (1)  51  -52  2018/03  [Not refereed][Not invited]
  • Unconventional myosin id is involved in the remyelinationprocess after cuprizone-induced demyelination
    Reiji Yamazaki, Yoshihide Yamaguchi, Tomoko Ishibashi, Hiroko baba  Journal of Neurochemistry  142-  (141)  WTH01-23  2017/08
  • 25th Biennial Meeting of the International Society for Neurochemistry-13th Asian Pacific Society for Neurochemistry joint meeting および 12th Biennial ISN Satellite Meeting Myelin Biology 2015 に参加して
    山崎礼二  神経化学  55-  (1)  55  -56  2016/03  [Not refereed][Invited]
  • Analysis of myosin superfamily in mature cultured oligodendrocytes and in cuprizone-treated de- and remyelination model mice.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H  Journal of Neurochemistry  134-  (109)  MTU01-21  2015/08
  • Expression of Unconventional myosin 1D in CNS myelin.
    Yamazaki R, Yamaguchi Y, Ishibashi T, Baba H  Journal of Neurochemistry  125-  (217)  PTW02-30  2013/04
  • Developmental expression of myosin 1D in rat brain white matter.
    Journal of Neurochemistry  123-  (58)  P01-36  2012/10

Awards & Honors

  • 2020/04 自治医科大学 JMU Young Investigator Award
     
    受賞者: 山崎礼二
  • 2019/08 27th Biennial Meeting of the International Society for Neurochemistry-American Society for Neurochemistry joint meeting in Montreal, Canada, 2019. Travel Grant Award.
     
    受賞者: 山崎礼二
  • 2019/07 Japanese Society for Neurochemistry JSN Nabeshima travel award
     
    受賞者: Reiji Yamazaki
  • 2017/09 日本神経化学会 優秀ポスター賞
     
    受賞者: 山崎礼二
  • 2017/08 14th ISN Advanced School of Neurochemistry in France Advanced school travel award
     
    受賞者: 山崎礼二
  • 2016/01 Young Glia silver award-travel award for Young Glia meeting
     
    受賞者: 山崎礼二
  • 2015/08 日本神経化学会 若手海外派遣奨励賞
     
    受賞者: 山崎礼二
  • 2013/04 24th Biennial Meeting of the International Society for Neurochemistry-American Society for Neurochemistry joint meeting in Cancun, Mexico, 2013. Travel Grant Award.
     
    受賞者: 山崎礼二

Research Grants & Projects

  • 動物モデルを用いた脳細動脈線維化機構の解明とヒト脳卒中再発における意義
    大樹生命厚生財団:医学研究助成
    Date (from‐to) : 2021/09 -2023/03 
    Author : 稲垣健志, 山崎礼二
  • 細胞保護を標的とした多発性硬化症に対する脱髄予防法の開発
    難病医学研究財団:医学研究奨励助成
    Date (from‐to) : 2021/01 -2022/03 
    Author : 山崎礼二、大野伸彦
  • 脳内クレアチン代謝を標的とした多発性硬化症に対する新規治療法の開発
    日本学術振興会:科学研究費助成事業 研究活動スタート支援
    Date (from‐to) : 2020/09 -2022/03 
    Author : 山崎 礼二
  • ミトコンドリア形態制御因子を標的とした多発性硬化症の病態解明および新規治療法の開発
    大樹生命厚生財団:医学研究助成
    Date (from‐to) : 2020/04 -2022/03 
    Author : 山崎礼二、大野伸彦
  • Jichi Medical University Young Investigator Award
    Jichi Medical University: Young Investigator Award:
    Date (from‐to) : 2020/04 -2021/03 
    Author : 山崎礼二
  • 脱髄性疾患や発達障害における脳内クレアチン代謝の役割
    先進医薬研究振興財団: 海外留学助成金:
    Date (from‐to) : 2018/01 -2019/01 
    Author : 山崎礼二
  • 髄鞘の形成や再生過程における非定型ミオシンの機能解析
    日本学術振興会:科学研究費助成事業 特別研究員奨励費
    Date (from‐to) : 2016/04 -2018/03 
    Author : 山崎 礼二
     
    本研究は、中枢ミエリンの形成や再生機構に着目し、オリゴデンドロサイト(OLs)に発現する非定型ミオシンの生理機能を明らかにすることを目的として研究を行った。昨年度までの研究成果から非定型ミオシンであるmyosin ID (Myo1d)とmyosin VI (Myo6)が新たにOLsに発現しており、これらの分子にはそれぞれ特異的な発現時期があり、OLsの分化やミエリン形成においてそれぞれが異なった機能を果たす可能性を見出してきた。また、脱髄モデルマウスを用いた解析からミエリン再生過程においてMyo1dが重要な役割を担っている可能性が示唆されている。本年度は、ミエリン再生過程におけるMyo1dの役割を詳細に解析するために、昨年度と同様にクプリゾン含有飼料による脱髄モデルマウスを作製し、再生過程の脱髄部にMyo1d特異的なsiRNAを投与した。その結果、siRNA投与でのMyo1d発現の減少により、主要なミエリンタンパク質の発現が減少していた。またこの際に成熟OLsの数には大きな変化は見られなかったが、その多くがアポトーシスを引き起こしていることが明らかとなった。これらのことから生体内のミエリン再生過程において、Myo1dは OLs成熟後 のミエリン形成最終段階で生存にも関わる重要な役割を果たしていることが示唆された。さらにMyo1dの発現抑制によって増加した活性化ミクログリアの性質を調べるために神経障害性と神経保護性のマーカーを用いて解析したところ、神経障害性のミクログリアが増加傾向であるのに対し、神経保護性のミクログリアが優位に減少していた。このことから、Myo1d発現減少によるOLs の異常により炎症が持続し、再生が遅延していると考えられた。以上の結果から、中枢脱髄後の再生過程においてもMyo1dが重要な役割を担っていることを明らかにした。
  • 中枢神経系ミエリンに発現するMyosin IDの解析
    日本科学協会: 平成27年度笹川科学研究助成:
    Date (from‐to) : 2015/04 -2016/03 
    Author : 山崎礼二

Teaching Experience

  • NeuroanatomyNeuroanatomy Jichi Medical University
  • HistologyHistology Jichi Medical University
  • HistologyHistology Jichi Medical University


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.